This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A130123 #22 Oct 19 2022 10:56:16 %S A130123 1,0,2,0,0,4,0,0,0,8,0,0,0,0,16,0,0,0,0,0,32,0,0,0,0,0,0,64,0,0,0,0,0, %T A130123 0,0,128,0,0,0,0,0,0,0,0,256,0,0,0,0,0,0,0,0,0,512,0,0,0,0,0,0,0,0,0, %U A130123 0,1024,0,0,0,0,0,0,0,0,0,0,0,2048,0,0,0,0,0,0,0,0,0,0,0,0,4096 %N A130123 Infinite lower triangular matrix with 2^k in the right diagonal and the rest zeros. Triangle, T(n,k), n zeros followed by the term 2^k. Triangle by columns, (2^k, 0, 0, 0, ...). %C A130123 A 2^n transform matrix. %C A130123 A130123 * A007318 = A038208. A007318 * A130123 = A013609. A130124 = A130123 * A002260. A130125 = A128174 * A130123. %C A130123 Triangle T(n,k), 0 <= k <= n, given by [0,0,0,0,0,0,...] DELTA [2,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - _Philippe Deléham_, May 26 2007 %C A130123 Also the Bell transform of A000038. For the definition of the Bell transform see A264428. - _Peter Luschny_, Jan 27 2016 %C A130123 T is the convolution triangle of the characteristic function of 2 (see A357368). - _Peter Luschny_, Oct 19 2022 %H A130123 G. C. Greubel, <a href="/A130123/b130123.txt">Rows n = 0..100 of triangle, flattened</a> %F A130123 G.f.: 1/(1-2*x*y). - _R. J. Mathar_, Aug 11 2015 %e A130123 First few terms of the triangle: %e A130123 1; %e A130123 0, 2; %e A130123 0, 0, 4; %e A130123 0, 0, 0, 8; %e A130123 0, 0, 0, 0, 16; %e A130123 0, 0, 0, 0, 0, 32; ... %p A130123 # The function BellMatrix is defined in A264428. %p A130123 BellMatrix(n -> `if`(n=0,2,0), 9); # _Peter Luschny_, Jan 27 2016 %p A130123 # Uses function PMatrix from A357368. %p A130123 PMatrix(10, n -> ifelse(n=1, 2, 0)); # _Peter Luschny_, Oct 19 2022 %t A130123 BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]]; %t A130123 rows = 12; %t A130123 M = BellMatrix[If[# == 0, 2, 0]&, rows]; %t A130123 Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Jun 23 2018, after _Peter Luschny_ *) %t A130123 Table[If[k==n, 2^n, 0], {n, 0, 12}, {k, 0, n}]//Flatten (* _G. C. Greubel_, Jun 05 2019 *) %o A130123 (PARI) {T(n,k) = if(k==n, 2^n, 0)}; \\ _G. C. Greubel_, Jun 05 2019 %o A130123 (Magma) [[k eq n select 2^n else 0: k in [0..n]]: n in [0..14]]; // _G. C. Greubel_, Jun 05 2019 %o A130123 (Sage) %o A130123 def T(n, k): %o A130123 if (k==n): return 2^n %o A130123 else: return 0 %o A130123 [[T(n, k) for k in (0..n)] for n in (0..14)] # _G. C. Greubel_, Jun 05 2019 %Y A130123 Cf. A130124, A130125. %K A130123 nonn,tabl,easy %O A130123 0,3 %A A130123 _Gary W. Adamson_, May 11 2007