This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A130125 #8 Sep 08 2022 08:45:30 %S A130125 1,0,2,1,0,4,0,2,0,8,1,0,4,0,16,0,2,0,8,0,32,1,0,4,0,16,0,64,0,2,0,8, %T A130125 0,32,0,128,1,0,4,0,16,0,64,0,256,0,2,0,8,0,32,0,128,0,512,1,0,4,0,16, %U A130125 0,64,0,256,0,1024,0,2,0,8,0,32,0,128,0,512,0,2048 %N A130125 Triangle defined by A128174 * A130123, read by rows. %C A130125 Row sums = A000975: (1, 2, 5, 10, 21, 42, ...). %H A130125 G. C. Greubel, <a href="/A130125/b130125.txt">Rows n = 0..100 of triangle, flattened</a> %F A130125 A128174 * A130123 as infinite lower triangular matrices. By columns, (2^k, 0, 2^k, 0, ...). %F A130125 T(n,k) = 2^(k-1)*(1 + (-1)^(n-k)). - _G. C. Greubel_, Jun 05 2019 %e A130125 First few rows of the triangle are: %e A130125 1; %e A130125 0, 2; %e A130125 1, 0, 4; %e A130125 0, 2, 0, 8; %e A130125 1, 0, 4, 0, 16; %e A130125 0, 2, 0, 8, 0, 32; ... %t A130125 Table[2^(k-1)*(1+(-1)^(n-k)), {n,0,10}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jun 05 2019 *) %o A130125 (PARI) {T(n,k) = 2^(k-1)*(1+(-1)^(n-k))}; \\ _G. C. Greubel_, Jun 05 2019 %o A130125 (Magma) [[2^(k-1)*(1+(-1)^(n-k)): k in [0..n]]: n in [0..10]]; // _G. C. Greubel_, Jun 05 2019 %o A130125 (Sage) [[2^(k-1)*(1+(-1)^(n-k)) for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Jun 05 2019 %o A130125 (GAP) Flat(List([0..10], n-> List([0..n], k-> 2^(k-1)*(1+(-1)^(n-k)) ))); # _G. C. Greubel_, Jun 05 2019 %Y A130125 Cf. A000975, A128174, A130123. %K A130125 nonn,tabl %O A130125 0,3 %A A130125 _Gary W. Adamson_, May 11 2007 %E A130125 More terms added by _G. C. Greubel_, Jun 05 2019