cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130128 Triangle read by rows: T(n,k) = (n - k + 1)*2^(k-1).

This page as a plain text file.
%I A130128 #25 Sep 24 2022 19:49:22
%S A130128 1,2,2,3,4,4,4,6,8,8,5,8,12,16,16,6,10,16,24,32,32,7,12,20,32,48,64,
%T A130128 64,8,14,24,40,64,96,128,128,9,16,28,48,80,128,192,256,256,10,18,32,
%U A130128 56,96,160,256,384,512,512,11,20,36,64,112,192,320,512,768,1024,1024
%N A130128 Triangle read by rows: T(n,k) = (n - k + 1)*2^(k-1).
%C A130128 T(n,k) is the number of paths from node 0 to odd k in a directed graph with 2n+1 vertices labeled 0, 1, ..., 2n+1 and edges leading from i to i+1 for all i, from i to i+2 for even i, and from i to i-2 for odd i. - _Grace Work_, Mar 01 2020
%H A130128 Andrew Howroyd, <a href="/A130128/b130128.txt">Table of n, a(n) for n = 1..1275</a>
%H A130128 E. Krom and M. M. Roughan, <a href="http://girlsangle.org/page/bulletin-archive/GABv13n03E.pdf">Path Counting and Eulerian Numbers</a>, Girls' Angle Bulletin, Vol. 13, No. 3 (2020), 8-10.
%F A130128 Equals A004736 * A130123 as infinite lower triangular matrices.
%F A130128 As a square array, n >= 0, k >= 1, read by descending antidiagonals, A(n,k) = k * 2^n. - _Peter Munn_, Sep 22 2022
%F A130128 G.f.: x*y/( (1-x)^2 * (1-2*x*y) ). - _Kevin Ryde_, Sep 24 2022
%e A130128 First few rows of the triangle are:
%e A130128   1;
%e A130128   2,  2;
%e A130128   3,  4,  4;
%e A130128   4,  6,  8,  8;
%e A130128   5,  8, 12, 16, 16;
%e A130128   6, 10, 16, 24, 32, 32;
%e A130128   7, 12, 20, 32, 48, 64, 64;
%e A130128   ...
%e A130128 From _Peter Munn_, Sep 22 2022: (Start)
%e A130128 As a square array, showing top left:
%e A130128     1,   2,   3,    4,    5,    6,    7, ...
%e A130128     2,   4,   6,    8,   10,   12,   14, ...
%e A130128     4,   8,  12,   16,   20,   24,   28, ...
%e A130128     8,  16,  24,   32,   40,   48,   56, ...
%e A130128    16,  32,  48,   64,   80,   96,  112, ...
%e A130128    32,  64,  96,  128,  160,  192,  224, ...
%e A130128   ...
%e A130128 (End)
%t A130128 Table[(n - k + 1)*2^(k - 1), {n, 11}, {k, n}] // Flatten (* _Michael De Vlieger_, Mar 23 2020 *)
%o A130128 (PARI) T(n,k)={(n - k + 1)*2^(k-1)} \\ _Andrew Howroyd_, Mar 01 2020
%Y A130128 Row sums are A000295.
%Y A130128 Cf. A004736, A054582 (subtable of square array), A130123.
%K A130128 nonn,easy,tabl,walk
%O A130128 1,2
%A A130128 _Gary W. Adamson_, May 11 2007
%E A130128 Name clarified by _Grace Work_, Mar 01 2020
%E A130128 Terms a(56) and beyond from _Andrew Howroyd_, Mar 01 2020