A130136 Triangle read by rows: T(n,k) is the number of Fibonacci binary words of length n and having k 0110's (n>=0, 0<=k<=floor((n-1)/3)). A Fibonacci binary word is a binary word having no 00 subword.
1, 2, 3, 5, 7, 1, 11, 2, 16, 5, 25, 8, 1, 37, 16, 2, 57, 26, 6, 85, 48, 10, 1, 130, 78, 23, 2, 195, 136, 39, 7, 297, 220, 80, 12, 1, 447, 371, 136, 31, 2, 679, 598, 258, 54, 8, 1024, 987, 437, 121, 14, 1, 1553, 1584, 790, 212, 40, 2, 2345, 2576, 1332, 432, 71, 9, 3553
Offset: 0
Examples
T(8,2)=2 because we have 01101101 and 10110110. Triangle starts: 1; 2; 3; 5; 7, 1; 11, 2; 16, 5; 25, 8, 1; ...
Programs
-
Maple
G:=(1+z+z^3-t*z^3)/(1-z-z^2+z^3-t*z^3-z^4+t*z^4): Gser:=simplify(series(G,z=0,23)): for n from 0 to 23 do P[n]:=sort(coeff(Gser,z,n)) od: 1; for n from 1 to 20 do seq(coeff(P[n],t,j),j=0..floor((n-1)/3)) od; # yields sequence in triangular form
-
Mathematica
gf = (1 + z + (1-t) z^3)/(1 - z - z^2 + (1-t) z^3 - (1-t) z^4); CoefficientList[#, t]& /@ CoefficientList[gf + O[z]^20, z] // Flatten (* Jean-François Alcover, Aug 25 2021 *)
Comments