cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130137 Number of Fibonacci binary words of length n having no 0110 subword. A Fibonacci binary word is a binary word having no 00 subword.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 16, 25, 37, 57, 85, 130, 195, 297, 447, 679, 1024, 1553, 2345, 3553, 5369, 8130, 12291, 18605, 28135, 42579, 64400, 97449, 147405, 223033, 337389, 510466, 772227, 1168337, 1767487, 2674063, 4045440, 6120353, 9259217, 14008193
Offset: 0

Views

Author

Emeric Deutsch, May 13 2007

Keywords

Examples

			a(4)=7 because from the 8 Fibonacci binary words of length 4 only 0110 does not qualify.
		

Crossrefs

Cf. A130136.

Programs

  • Maple
    a[0]:=1: a[1]:=2: a[2]:=3: a[3]:=5: for n from 4 to 45 do a[n]:=a[n-1]+a[n-2]-a[n-3]+a[n-4] od: seq(a[n],n=0..45);
  • Mathematica
    LinearRecurrence[{1, 1, -1, 1}, {1, 2, 3, 5}, 40] (* Jean-François Alcover, Aug 25 2021 *)

Formula

G.f.: (1+z+z^3)/(1-z-z^2+z^3-z^4).
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4); a(0)=1, a(1)=2, a(2)=3, a(3)=5.
a(n) = A130136(n,0).
a(n) = A124280(n)+A124280(n-1)+A124280(n-3). - R. J. Mathar, Mar 14 2025