A130138 Triangle read by rows: T(n,k) is the number of Fibonacci binary words of length n and having k 1011's (n>=0, 0<=k<=floor((n-1)/3)). A Fibonacci binary word is a binary word having no 00 subword.
1, 2, 3, 5, 7, 1, 9, 4, 11, 10, 13, 20, 1, 15, 35, 5, 17, 56, 16, 19, 84, 40, 1, 21, 120, 86, 6, 23, 165, 166, 23, 25, 220, 296, 68, 1, 27, 286, 496, 171, 7, 29, 364, 791, 382, 31, 31, 455, 1211, 781, 105, 1, 33, 560, 1792, 1488, 300, 8, 35, 680, 2576, 2678, 756, 40, 37
Offset: 0
Examples
T(7,2)=1 because we have 1011011. Triangle starts: 1; 2; 3; 5; 7,1; 9,4; 11,10; 13,20,1; 15,35,5;
Programs
-
Maple
G:=(1+z)*(1+z^3-t*z^3)/(1-z-z^2+z^3-t*z^3): Gser:=simplify(series(G,z=0,24)): for n from 0 to 21 do P[n]:=sort(coeff(Gser,z,n)) od: 1; for n from 1 to 21 do seq(coeff(P[n],t,j),j=0..floor((n-1)/3)) od; # yields sequence in triangular form
Formula
G.f.=G(t,z)=(1+z)(1+z^3-tz^3)/[1-z-z^2+z^3-tz^3].
Comments