cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130162 Triangle read by rows: A051731 * A000837 as a diagonalized matrix.

This page as a plain text file.
%I A130162 #15 Jun 27 2023 09:23:56
%S A130162 1,1,1,1,0,2,1,1,0,3,1,0,0,0,6,1,1,2,0,0,7,1,0,0,0,0,0,14,1,1,0,3,0,0,
%T A130162 0,17,1,0,2,0,0,0,0,0,27,1,1,0,0,6,0,0,0,0,34,1,0,0,0,0,0,0,0,0,0,55,
%U A130162 1,1,2,3,0,7,0,0,0,0,0,63
%N A130162 Triangle read by rows: A051731 * A000837 as a diagonalized matrix.
%C A130162 Right border = A000837 (offset 1).
%C A130162 Row sums = partition numbers A000041 starting (1, 2, 3, 5, 7, ...).
%F A130162 A051731 * A000837 (starting at offset 1) as a diagonalized matrix M, where M = T(n,k) = A000837(n) * 0^(n-k), 1<=k<=n; i.e., (1; 0,1; 0,0,2; 0,0,0,3; 0,0,0,0,6;...).
%F A130162 A051731 = inverse Moebius transform.
%e A130162 First few rows of the triangle:
%e A130162   1;
%e A130162   1,  1;
%e A130162   1,  0,  2;
%e A130162   1,  1,  0,  3;
%e A130162   1,  0,  0,  0,  6;
%e A130162   1,  1,  2,  0,  0,  7;
%e A130162   1,  0,  0,  0,  0,  0, 14;
%e A130162   1,  1,  0,  3,  0,  0,  0, 17;
%e A130162   ...
%t A130162 rows = 12; A000837[n_] := Sum[ MoebiusMu[n/d]*PartitionsP[d], {d, Divisors[n]}]; A000837diag = DiagonalMatrix[Array[A000837, rows]]; A051731 = Table[ If[Mod[n, k] == 0, 1, 0], {n, 1, rows}, {k, 1, rows}]; A130162 = A051731.A000837diag; Table[ A130162[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Oct 03 2013 *)
%Y A130162 Cf. A000041, A000837, A051731.
%K A130162 nonn,tabl
%O A130162 1,6
%A A130162 _Gary W. Adamson_, May 13 2007
%E A130162 More terms from _Jean-François Alcover_, Oct 03 2013
%E A130162 Offset changed to 1 by _Georg Fischer_, Jun 27 2023