This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A130169 #16 Apr 08 2021 11:53:21 %S A130169 1,2,9,63,621,8127,135729,2810403,70558101,2109957687,74061977049, %T A130169 3014272078443,140764140297981,7474792551154047,447790997859123969, %U A130169 30053688313164013683,2245843775591721612261,185829940905166760571207,16941047558158020804504489 %N A130169 a(1) = 1; for n>1, a(n) = (c(n) + c(n+1))/2, where c(n) = A130168(n). %H A130169 Hippolyte Dellac, <a href="https://odyssee.univ-amu.fr/files/original/2/18/Annales-faculte-sc-Mrs_1901_T-11.pdf">Note sur l'élimination, méthode de parallélogramme</a>, Annales de la Faculté des Sciences de Marseille, XI (1901), 141-164. [Warning 76 Mb; go to p. 81 in the pdf file] %F A130169 G.f.: (1+x)^2/(3*x^3)*Q(0) + (x^3 - 5*x^2 - 5*x - 2)/(6*x^3), where Q(k) = 1 - x*(k+1)^2/( x*(k+1)^2 - 2/(1 - x*(k+1)^2/( x*(k+1)^2 - 2/Q(k+1) ))); (continued fraction). - _Sergei N. Gladkovskii_, Oct 22 2013 %t A130169 b[n_] := (-2^(-1))^(n-2)*Sum[Binomial[n, k]*(1-2^(n+k+1))* BernoulliB[n+k+1], {k, 0, n}]; %t A130169 c[n_] := (b[n] + b[n+1])/3; %t A130169 a[n_] := If[n == 1, 1, (c[n] + c[n+1])/2]; %t A130169 a /@ Range[1, 19] (* _Jean-François Alcover_, Apr 08 2021 *) %Y A130169 Cf. A000366, A130168. %K A130169 nonn %O A130169 1,2 %A A130169 _Don Knuth_, Aug 02 2007