A130182 Coefficients of the v=1 member of a family of certain orthogonal polynomials.
1, -2, 1, 0, -2, 1, 0, -12, 4, 1, 0, -144, 28, 20, 1, 0, -2880, 216, 508, 50, 1, 0, -86400, -2592, 17400, 2548, 98, 1, 0, -3628800, -449280, 788688, 153760, 8568, 168, 1, 0, -203212800, -42405120, 46032768, 11269008, 811648, 23016, 264, 1, 0, -14631321600, -4187635200, 3372731136
Offset: 0
Examples
Triangle begins: [1]; [-2,1]; [0,-2,1]; [0,-12,4,1]; [0,-144,28,20,1]; [0,-2880,216,508,50,1]; ... Row n=5:[0,-2880,216,508,50,1]; pt(5,2,x)= x*(-2880+216*x+508*x^2+50*x^3+1*x^4)= x*(x-2)*(1440+612*x+52*x^2+x^3). pt(5,1,x) has the guaranteed integer zero x=2 (and also x=0 and some other three zeros). Row n=1:[ -2,1]. pt(1,1,x)=-2+x with integer zero x=2.
Links
- M. Bruschi, F. Calogero and R. Droghei, Proof of certain Diophantine conjectures and identification of remarkable classes of orthogonal polynomials, J. Physics A, 40(2007), pp. 3815-3829.
- Wolfdieter Lang, First ten rows and more.
Crossrefs
Formula
a(n,m) = [x^m]pt(n,1,x), n>=0, with the three term recurrence for orthogonal polynomial systems of the form pt(n,v,x) = (x + 2*n*(n-1-v))*pt(n-1,v,x) -(n-1)*n*(n-1-v)*(n-2-v)*pt(n-2,v,x), n>=1; pt(-1,v,x)=0 and pt(0,v,x)=1. Put v=1 here.
Recurrence: a(n,m) = a(n-1,m-1)+2*n*(n-2)*a(n-1,m) - (n-1)*n*(n-2)*(n-3)*a(n-2,m); a(n,m)=0 if n
Comments