A130206 Primes in lunar arithmetic in base 3 written in base 10.
5, 6, 7, 8, 11, 19, 20, 23, 29, 32, 34, 35, 38, 46, 47, 55, 56, 58, 59, 61, 62, 64, 65, 68, 71, 73, 74, 77, 83, 86, 88, 89, 95, 97, 98, 103, 104, 106, 107, 110, 119, 127, 128, 136, 137, 142, 143, 145, 146, 154, 155, 163, 164, 166, 167, 169, 170, 173, 175, 176, 178, 179, 184, 185, 187, 188, 190
Offset: 1
Links
- D. Applegate, M. LeBrun and N. J. A. Sloane, Dismal Arithmetic, arXiv:1107.1130 [math.NT], 2011. [Note: we have now changed the name from "dismal arithmetic" to "lunar arithmetic" - the old name was too depressing]
- Index entries for sequences related to dismal (or lunar) arithmetic
Crossrefs
Cf. A170806.
Programs
-
Python
def ternary(m): if m == 0: return '0' s = [] while m: m, r = divmod(m, 3) s.append(str(r)) return ''.join(reversed(s)) def addn(m1, m2): s1, s2 = ternary(m1), ternary(m2) len_max = max(len(s1), len(s2)) return int(''.join(max(i, j) for i, j in zip(s1.rjust(len_max, '0'), s2.rjust(len_max, '0')))) def muln(m1, m2): s1, s2, prod = ternary(m1), ternary(m2), '0' for i in range(len(s2)): k = s2[-i-1] prod = addn(int(str(prod), 3), int(''.join(min(j, k) for j in s1), 3)*3**i) return prod for m in range(3,201): i, ct = 1, 0 for i in range(1, m+1): if i == 2: continue j = i for j in range(1, m+1): if j == 2: continue ij = int(str(muln(i, j)), 3) if ij == m: ct += 1; break if ct > 0: break if ct == 0: print(m) # Ya-Ping Lu, Dec 30 2020
Extensions
Entries >=83 from R. J. Mathar, Nov 23 2015