This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A130207 #15 Jan 17 2025 16:30:16 %S A130207 1,0,1,0,0,2,0,0,0,2,0,0,0,0,4,0,0,0,0,0,2,0,0,0,0,0,0,6,0,0,0,0,0,0, %T A130207 0,4,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,10,0,0, %U A130207 0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,6 %N A130207 Diagonalized matrix of A000010, Euler totient function phi. %H A130207 Antti Karttunen, <a href="/A130207/b130207.txt">Table of n, a(n) for n = 1..22155; the first 210 rows of the triangle</a> %F A130207 T(n,n) = A000010(n). %F A130207 T(n,k) = 0, if k <> n. %e A130207 First few rows of the triangle are: %e A130207 1; %e A130207 0, 1; %e A130207 0, 0, 2; %e A130207 0, 0, 0, 2; %e A130207 0, 0, 0, 0, 4; %e A130207 ... %p A130207 A130207 := proc(n,k) %p A130207 if k = n then %p A130207 numtheory[phi](n); %p A130207 else %p A130207 0; %p A130207 end if; %p A130207 end proc: %p A130207 seq(seq(A130207(n,k),k=1..n),n=1..15) ; %o A130207 (PARI) for(n=1,9,for(k=2,n,print1("0, "));print1(eulerphi(n)", ")) \\ _Charles R Greathouse IV_, Feb 19 2013 %o A130207 (PARI) A130207(n) = if(ispolygonal(n,3), eulerphi((sqrtint(1+(n*8))-1)/2), 0); \\ _Antti Karttunen_, Jan 17 2025 %Y A130207 Cf. A000010, A130208, A130209. %K A130207 nonn,tabl,easy %O A130207 1,6 %A A130207 _Gary W. Adamson_, May 16 2007 %E A130207 Data section extended up to a(105) by _Antti Karttunen_, Jan 17 2025