A130229 Primes p == 5 (mod 8) such that the Diophantine equation x^2 - p*y^2 = -4 has no solution in odd integers x, y.
37, 101, 197, 269, 349, 373, 389, 557, 677, 701, 709, 757, 829, 877, 997, 1213, 1301, 1613, 1861, 1901, 1949, 1973, 2069, 2221, 2269, 2341, 2357, 2621, 2797, 2837, 2917, 3109, 3181, 3301, 3413, 3709, 3797, 3821, 3853, 3877, 4013, 4021, 4093
Offset: 1
Keywords
Links
- Robin Visser, Table of n, a(n) for n = 1..10000
- Dario Alpern, Generic two integer variable equation solver.
- Florian Breuer, Periods of Ducci sequences and odd solutions to a Pellian equation, University of Newcastle, Australia, 2018.
- Florian Breuer and Cameron Shaw-Carmody, Parity bias in fundamental units of real quadratic fields, Univ. Newcastle (Australia), Comp.-Assisted Res. Math. Appl. (2024). See pp. 1-4.
- J. Xue, T.-C. Yang, C.-F. Yu, Supersingular abelian surfaces and Eichler class number formula, arXiv preprint arXiv:1404.2978, 2014
- Jiangwei Xue, TC Yang, CF Yu, Numerical Invariants of Totally Imaginary Quadratic Z[sqrt{p}]-orders, arXiv preprint arXiv:1603.02789, 2016
Crossrefs
Cf. A130230.
Comments