This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A130236 #23 Mar 18 2023 03:56:13 %S A130236 0,1,4,8,13,18,24,30,36,43,50,57,64,71,79,87,95,103,111,119,127,135, %T A130236 144,153,162,171,180,189,198,207,216,225,234,243,252,262,272,282,292, %U A130236 302,312,322,332,342,352,362,372,382,392,402,412,422,432,442,452,462,473 %N A130236 Partial sums of the 'upper' Fibonacci Inverse A130234. %H A130236 G. C. Greubel, <a href="/A130236/b130236.txt">Table of n, a(n) for n = 0..5000</a> %F A130236 a(n) = Sum_{k=0..n} A130234(k). %F A130236 a(n) = n*A130234(n) - Fibonacci(A130234(n)+1) + 1. %F A130236 G.f.: (x/(1-x)^2) * Sum_{k>=0} x^Fibonacci(k). %t A130236 b[n_]:= For[i=0, True, i++, If[Fibonacci[i] >= n, Return[i]]]; %t A130236 b/@ Range[0, 56]//Accumulate (* _Jean-François Alcover_, Apr 13 2020 *) %o A130236 (Magma) %o A130236 m:=120; %o A130236 f:= func< x | x*(&+[x^Fibonacci(j): j in [0..Floor(3*Log(3*m+1))]])/(1-x)^2 >; %o A130236 R<x>:=PowerSeriesRing(Rationals(), m+1); %o A130236 [0] cat Coefficients(R!( f(x) )); // _G. C. Greubel_, Mar 18 2023 %o A130236 (SageMath) %o A130236 m=120 %o A130236 def f(x): return x*sum( x^fibonacci(j) for j in range(1+int(3*log(3*m+1))))/(1-x)^2 %o A130236 def A130236_list(prec): %o A130236 P.<x> = PowerSeriesRing(ZZ, prec) %o A130236 return P( f(x) ).list() %o A130236 A130236_list(m) # _G. C. Greubel_, Mar 18 2023 %Y A130236 Cf. A000045, A130233, A130234, A130235, A130244, A130246, A130244, A130246, A130248, A130252, A130258, A130262. %K A130236 nonn %O A130236 0,3 %A A130236 _Hieronymus Fischer_, May 17 2007