This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A130238 #7 Mar 18 2023 03:56:03 %S A130238 0,2,8,20,36,61,91,126,174,228,288,354,426,517,615,720,832,951,1077, %T A130238 1210,1350,1518,1694,1878,2070,2270,2478,2694,2918,3150,3390,3638, %U A130238 3894,4158,4464,4779,5103,5436,5778,6129,6489,6858,7236,7623,8019,8424,8838 %N A130238 Partial sums of A130237. %H A130238 G. C. Greubel, <a href="/A130238/b130238.txt">Table of n, a(n) for n = 0..5000</a> %F A130238 a(n) = Sum_{k=0..n} A130237(k). %F A130238 a(n) = (n*(n+1)*A130233(n) - (Fib(A130233(n)) - 1)*(Fib(A130233(n) + 1) - 1))/2. %F A130238 G.f.: (1/(1-x)^3)*Sum_{k>=1} (Fib(k)*(1-x) + x)*x^Fib(k). %t A130238 a[n_]:= a[n]= Sum[j*Floor[Log[GoldenRatio, 3/2 +j*Sqrt[5]]], {j,0,n}]; %t A130238 Table[a[n], {n,0,70}] (* _G. C. Greubel_, Mar 18 2023 *) %o A130238 (Magma) [(&+[j*Floor(Log(3/2 +j*Sqrt(5))/Log((1+Sqrt(5))/2)): j in [0..n]]): n in [0..70]]; // _G. C. Greubel_, Mar 18 2023 %o A130238 (SageMath) %o A130238 def A130238(n): return sum(j*int(log(3/2 +j*sqrt(5), golden_ratio)) for j in range(n+1)) %o A130238 [A130238(n) for n in range(71)] # _G. C. Greubel_, Mar 18 2023 %Y A130238 Cf. A000045, A130233, A130234, A130235, A130236, A130237, A130239, A130240, A130243, A130246, A130248, A130239, A130251, A130253, A130257, A130261. %K A130238 nonn %O A130238 0,2 %A A130238 _Hieronymus Fischer_, May 17 2007