cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130244 Partial sums of the 'upper' Lucas Inverse A130242.

This page as a plain text file.
%I A130244 #8 Sep 08 2022 08:45:30
%S A130244 0,0,0,2,5,9,13,17,22,27,32,37,43,49,55,61,67,73,79,86,93,100,107,114,
%T A130244 121,128,135,142,149,156,164,172,180,188,196,204,212,220,228,236,244,
%U A130244 252,260,268,276,284,292,300,309,318,327,336,345,354,363,372,381,390
%N A130244 Partial sums of the 'upper' Lucas Inverse A130242.
%H A130244 G. C. Greubel, <a href="/A130244/b130244.txt">Table of n, a(n) for n = 0..2500</a>
%F A130244 a(n) = Sum_{k=0..n} A130242(k).
%F A130244 a(n) = n*A130242(n) - A000032(A130242(n) +1) for n>=3.
%F A130244 G.f.: x/(1-x)^2*(2*x^2 + Sum{k>=2, x^Lucas(k)}).
%t A130244 Join[{0, 0}, Table[Sum[Ceiling[Log[GoldenRatio, k + 1/2]], {k, 0, n}], {n, 1, 50}]] (* _G. C. Greubel_, Sep 12 2018 *)
%o A130244 (PARI) for(n=-1,50, print1(if(n==-1, 0, if(n==0, 0, sum(k=0, n, ceil(log(k + 1/2)/log((1+sqrt(5))/2))))), ", ")) \\ _G. C. Greubel_, Sep 12 2018
%o A130244 (Magma) [0,0] cat [(&+[Ceiling(Log(k + 1/2)/Log((1+Sqrt(5))/2)) : k in [0..n]]): n in [1..50]]; // _G. C. Greubel_, Sep 12 2018
%Y A130244 Other related sequences: A000032, A130241, A130243, A130245, A130246, A130248, A130252, A130258, A130262. Fibonacci inverse see A130233 - A130240, A104162.
%K A130244 nonn
%O A130244 0,4
%A A130244 _Hieronymus Fischer_, May 19 2007