This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A130246 #17 Sep 08 2022 08:45:30 %S A130246 0,1,3,6,10,14,18,23,28,33,38,44,50,56,62,68,74,80,87,94,101,108,115, %T A130246 122,129,136,143,150,157,165,173,181,189,197,205,213,221,229,237,245, %U A130246 253,261,269,277,285,293,301,310,319,328,337,346,355,364,373,382,391 %N A130246 Partial sums of A130245. %H A130246 G. C. Greubel, <a href="/A130246/b130246.txt">Table of n, a(n) for n = 0..2500</a> %F A130246 a(n) = Sum_{k=1..n} A130245(k). %F A130246 a(n) = 1 +(n+1)*A130245(n) - A000032(A130245(n)+1) for n=0 or n >= 2. %F A130246 G.f.: 1/(1-x)^2*Sum_{k>=0} x^A000032(k). %t A130246 Table[Sum[1 + Floor[Log[GoldenRatio, (2*k + 1)/2]], {k, 1, n}], {n, 0, 100}] (* _G. C. Greubel_, Sep 09 2018 *) %o A130246 (PARI) for(n=0, 100, print1(sum(k=1,n, 1 + floor(log((2*k+1)/2)/log((1+sqrt(5))/2))), ", ")) \\ _G. C. Greubel_, Sep 09 2018 %o A130246 (Magma) [0] cat [(&+[1+Floor(Log((2*k+1)/2)/Log((1+Sqrt(5))/2)): k in [1..n]]): n in [1..100]]; // _G. C. Greubel_, Sep 09 2018 %Y A130246 Other related sequences: A000032, A130241, A130243, A130244, A130248, A130251, A130252, A130255, A130257, A130261. Fibonacci inverse see A130233 - A130240, A104162. %K A130246 nonn %O A130246 0,3 %A A130246 _Hieronymus Fischer_, May 19 2007