cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130280 a(n) = smallest integer k>1 such that n(k^2-1)+1 is a perfect square, or 0 if no such number exists.

Original entry on oeis.org

2, 5, 3, 0, 2, 3, 5, 2, 0, 3, 7, 5, 4, 11, 3, 2, 4, 13, 9, 7, 2, 5, 19, 4, 0, 5, 21, 3, 11, 9, 11, 14, 2, 29, 5, 3, 6, 31, 21, 2, 13, 11, 13, 169, 3, 7, 41, 6, 0, 7, 5, 11, 22, 419, 3, 2, 5, 23, 461, 27, 8, 55, 7, 4, 2, 3, 49, 29
Offset: 1

Views

Author

M. F. Hasler, May 20 2007, May 25 2007

Keywords

Comments

A084702(n) = a(n)^2-1, resp. a(n) = sqrt(A084702(n)+1). See A130283 for values where A130280(n)=0.

Examples

			a( (2k)^2 ) <= k since (2k)^2(k^2-1)+1 = (2k^2-1)^2 (but k=1 is excluded since with k^2-1=0 this would be a trivial solution for any n).
		

Crossrefs

Programs

  • Maple
    A130280:=proc(n) local x,y,z; if n=1 then return 2 fi; isolve(n*(x^2-1)+1=y^2,z); select(has,`union`(%),x); map(rhs,%); simplify(eval(%,z=1) union eval(%,z=0)) minus {-1,1}; if %={} then 0 else (min@op@map)(abs,%) fi end;
  • Mathematica
    $MaxExtraPrecision = 100;
    r[n_, c_] := Reduce[k > 1 && j > 1 && n*(k^2 - 1) + 1 == j^2, {j, k}, Integers] /. C[1] -> c // Simplify;
    a[n_] := If[rn = r[n,0] || r[n,1] || r[n,2]; rn === False, 0, k /. {ToRules[rn]} // Min];
    Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 800}] (* Jean-François Alcover, May 12 2017 *)
  • PARI
    {A130280(n,L=10^15)=if(issquare(n),L=2+sqrtint(n>>2)); for( k=2, L, if( issquare(n*(k^2-1)+1),return(k)))}

Formula

If n=(2k)^2, then A130280(n) <= k, since (2k)^2(k^2-1)+1 = (2k^2-1)^2. See A130281 for the cases where equality does not hold. If n=k^2-1, then A130280(n) <= k-1 since (k^2-1)((k-1)^2-1)+1 = (k^2-k-1)^2. See A130282 for the cases where equality does not hold.