cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130284 Integers j > 0 such that (2j+1)^2(m^2-1) + 1 is a square for some integer m > 1.

Original entry on oeis.org

7, 17, 31, 49, 71, 97, 104, 127, 161, 199, 241, 287, 337, 391, 449, 511, 577, 594, 647, 721, 799, 881, 967, 1057, 1151, 1249, 1351, 1455, 1457, 1567, 1681, 1799, 1921, 1952, 2047, 2177, 2311, 2449, 2591, 2737, 2887, 3041, 3199, 3361, 3527, 3697, 3871, 4049
Offset: 1

Views

Author

M. F. Hasler, May 24 2007, May 29 2007

Keywords

Comments

All terms > 4 in A130283 are odd squares, but not all odd squares are in that sequence: This sequence here gives the exceptions as (2a(n)+1)^2. The sequence consists mainly of the subsequences: (1) A056220(k) = 2k^2-1 with k>1: {7,17,31,49,...}, for which m=k gives (1+2*A056220(k))^2(k^2-1)+1 = k^2(4k^2-3)^2; (2) 2*A079414(k) = 2k^2(4k^2-3) with k>1: {104,594,1952,4850,...}, for which m=k gives (1+4*A079414(k))^2(k^2-1)+1 = k^2(16k^4-20k^2+5)^2. A third subsequence starts {1455,20195,...}; up to 20195, all terms are in one of these subsequences.

Examples

			Up to k=17, a(k)=P[1](k+1) with P[1] = 2x^2 - 1, A130280(a(k)) = k+1.
a(18) = P[2](2) < P[1](19) with P[2] = 2x^2*(4x^2 - 3), A130280(a(18)) = 2.
a(106) = P[1](100) < a(107) = P[3](3) < a(108) = P[4](2) < a(109) = P[1](101).
		

Crossrefs

Programs

  • Mathematica
    r[n_] := Reduce[m>1 && k>1 && (2n+1)^2*(m^2-1)+1 == k^2, {m, k}, Integers];
    Reap[For[n=1, n <= 5000, n++, If[r[n] =!= False, Print[n]; Sow[n]]]][[2,1]] (* Jean-François Alcover, May 12 2017 *)
  • PARI
    A130284( LIM=9999, START=1 )={ local(N); for( n=START, LIM, N=(2*n+1)^2; for( m=2, sqrtint(n>>1+1), if(!issquare( N*(m^2-1)+1 ), next); print1(n", "); next(2))) }
    
  • PARI
    {Q(k,x=x)=if(m>0,(4*x^2-2)*Q(k-1,x)-Q(k-2,x),1)} {P(k,x=x)=if(type(x=(x^2*Q(k,x)^2-1)/(x^2-1))!="t_POL",sqrtint(x)\2,((-1)^k*Pol(sqrt(x))-1)/2)}

Formula

A130284 = { P[k](m) ; k=1,2,3,..., m=2,3,4,... } where P[k] = (sqrt((X^2 Q[k]^2 - 1)/(X^2 - 1))-1)/2 and Q[0] = Q[-1] = 1, Q[k+1] = (4X^2 -2)*Q[k] - Q[k-1]. Furthermore, (2P[k](m)+1)^2 (m^2 - 1)+1 = m^2 Q[k](m)^2, thus A130280(P[k](m)) <= m. So far, no case is known where we have strict inequality.