A130284 Integers j > 0 such that (2j+1)^2(m^2-1) + 1 is a square for some integer m > 1.
7, 17, 31, 49, 71, 97, 104, 127, 161, 199, 241, 287, 337, 391, 449, 511, 577, 594, 647, 721, 799, 881, 967, 1057, 1151, 1249, 1351, 1455, 1457, 1567, 1681, 1799, 1921, 1952, 2047, 2177, 2311, 2449, 2591, 2737, 2887, 3041, 3199, 3361, 3527, 3697, 3871, 4049
Offset: 1
Keywords
Examples
Up to k=17, a(k)=P[1](k+1) with P[1] = 2x^2 - 1, A130280(a(k)) = k+1. a(18) = P[2](2) < P[1](19) with P[2] = 2x^2*(4x^2 - 3), A130280(a(18)) = 2. a(106) = P[1](100) < a(107) = P[3](3) < a(108) = P[4](2) < a(109) = P[1](101).
Programs
-
Mathematica
r[n_] := Reduce[m>1 && k>1 && (2n+1)^2*(m^2-1)+1 == k^2, {m, k}, Integers]; Reap[For[n=1, n <= 5000, n++, If[r[n] =!= False, Print[n]; Sow[n]]]][[2,1]] (* Jean-François Alcover, May 12 2017 *)
-
PARI
A130284( LIM=9999, START=1 )={ local(N); for( n=START, LIM, N=(2*n+1)^2; for( m=2, sqrtint(n>>1+1), if(!issquare( N*(m^2-1)+1 ), next); print1(n", "); next(2))) }
-
PARI
{Q(k,x=x)=if(m>0,(4*x^2-2)*Q(k-1,x)-Q(k-2,x),1)} {P(k,x=x)=if(type(x=(x^2*Q(k,x)^2-1)/(x^2-1))!="t_POL",sqrtint(x)\2,((-1)^k*Pol(sqrt(x))-1)/2)}
Comments