This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A130294 #12 Dec 14 2018 06:31:27 %S A130294 1,1,1,3,7,55,307,6153,82977,4196961,137460201,17446527483, %T A130294 1392263902567,441865841817751,86102618147479627,68171466271082093265, %U A130294 32487634563234662295169,64060941478203660710291329,74749048993664905589266454929,366627599282115135074804792982963 %N A130294 Degree of the n X n Brauer loop scheme. Also, the sum of components of the Brauer loop model in size n. %H A130294 Alois P. Heinz, <a href="/A130294/b130294.txt">Table of n, a(n) for n = 0..100</a> %H A130294 A. Knutson and P. Zinn-Justin, <a href="http://arXiv.org/abs/math.AG/0503224">A scheme related to the Brauer loop model</a>, Adv. in Math. 214 (2007), 40-77. %F A130294 a(2n) = det(binomial(2i+2j+1,2i)), 0<=i,j<=n-1; a(2n+1) = det(binomial(2i+2j+3,2i+1)), 0<=i,j<=n-1. %t A130294 a[n_] := Which[n == 0, 1, n == 1, 1, EvenQ[n], Det[Table[Binomial[2i + 2j + 1, 2i], {i, 0, n/2 - 1}, {j, 0, n/2 - 1}]], True, Det[Table[Binomial[2i + 2j + 3, 2i + 1], {i, 0, (n-1)/2 - 1}, {j, 0, (n-1)/2 - 1}]]]; %t A130294 Table[a[n], {n, 0, 19}] (* _Jean-François Alcover_, Dec 14 2018 *) %Y A130294 Cf. A130306. %K A130294 nonn %O A130294 0,4 %A A130294 _Paul Zinn-Justin_, Aug 06 2007 %E A130294 More terms from _Alois P. Heinz_, Dec 04 2018