This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A130416 #12 Aug 30 2019 03:54:54 %S A130416 1,49,6623,741857,13247611,3060203141,13645449045719,218327192834879, %T A130416 100212182125865461,1904031462407822767,2534265876944902342877, %U A130416 58288115171766608401171,128058989033214718801833487 %N A130416 Numerator of partial sums for a series of (17/18)*Zeta(4) = (17/1680)*Pi^4. %C A130416 Denominators are given by A130417. %C A130416 The rationals r(n) = 2*Sum_{k=1..n} 1/(k^4*binomial(2*k,k)) tend, in the limit n->infinity, to (18/17)*Zeta(4) = (17/1680)*Pi^4, approximately 1.022194166. %D A130416 L. Berggren, T. Borwein and P. Borwein, Pi: A Source Book, Springer, New York, 1997, p. 687. %D A130416 L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 89, Exercise. %H A130416 W. Lang, <a href="/A130416/a130416.txt">Rationals and limit.</a> %H A130416 A. van der Poorten, <a href="http://pracownicy.uksw.edu.pl/mwolf/Poorten_MI_195_0.pdf"> A proof that Euler missed ... Apery's proof of the irrationality of zeta(3). An informal report</a>, Math. Intelligencer 1 (1978/79), no. 4, 195-203; reprinted in Pi: A Source Book, pp. 439-447, footnote 10, p. 446 (conjecture). %F A130416 a(n) = numerator(r(n)), n >= 1, with the rationals defined above. %e A130416 Rationals: 1, 49/48, 6623/6480, 741857/725760, 13247611/12960000, ... %Y A130416 Partial sums for Zeta(4): A007410/A007480. %K A130416 nonn,frac,easy %O A130416 1,2 %A A130416 _Wolfdieter Lang_, Jul 13 2007