cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130451 Number of divisors of A123193(n).

This page as a plain text file.
%I A130451 #10 Jan 27 2024 10:33:06
%S A130451 1,2,2,3,2,2,3,2,2,5,2,2,2,8,3,2,8,2,2,8,2,8,2,2,3,2,8,8,2,2,8,2,8,2,
%T A130451 2,8,2,5,2,8,2,2,2,8,2,8,8,2,2,8,2,8,3,2,8,8,2,8,8,2,8,2,2,2,8,8,2,2,
%U A130451 8,2,3,8,2,8,2,2,8,8,8,8
%N A130451 Number of divisors of A123193(n).
%F A130451 a(n)=A000005(A123193(n)). - _R. J. Mathar_, Nov 16 2007
%p A130451 isFib := proc(n) local i ; for i from 1 do if combinat[fibonacci](i) > n then RETURN(false) ; elif combinat[fibonacci](i) = n then RETURN(true) ; fi ; od: end: A123193 := proc(n) option remember ; local nmin,k ; nmin := 1 : if n > 1 then nmin := A123193(n-1)+1 ; fi ; for k from nmin do if isFib( numtheory[tau](k) ) then RETURN(k) ; fi ; od: end: A130451 := proc(n) numtheory[tau](A123193(n)) ; end: seq(A130451(n),n=1..80) ; # _R. J. Mathar_, Nov 16 2007
%t A130451 FibQ[n_] := IntegerQ[Sqrt[5 n^2 + 4]] || IntegerQ[Sqrt[5 n^2 - 4]];
%t A130451 Select[DivisorSigma[0, Range[250]], FibQ] (* _Jean-François Alcover_, Jan 27 2024 *)
%K A130451 easy,nonn
%O A130451 1,2
%A A130451 _Giovanni Teofilatto_, Aug 08 2007
%E A130451 Corrected and extended by _R. J. Mathar_, Nov 16 2007