A130461 Triangle, antidiagonals of an array generated from A130460.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 2, 6, 4, 1, 1, 1, 2, 6, 12, 5, 1, 1, 1, 2, 6, 24, 20, 6, 1, 1, 1, 2, 6, 24, 60, 30, 7, 1, 1, 1, 2, 6, 24, 120, 120, 42, 8, 1, 1, 1, 2, 6, 24, 120, 360, 210, 56, 9, 1, 1, 1, 2, 6, 24, 120, 720, 840, 336, 72, 10, 1, 1, 1, 2, 6, 24, 120, 720, 2520
Offset: 0
Examples
The array = 1, 1, 1, 1, 1, 1, ... 1, 1, 2, 3, 4, 5, ... 1, 1, 2, 6, 12, 20, ... 1, 1, 2, 6, 24, 60, ... 1, 1, 2, 6, 24, 120, ... 1, 1, 2, 6, 24, 120, ... ... First few rows of the triangle: 1; 1, 1; 1, 1, 1; 1, 1, 2, 1; 1, 1, 2, 3, 1; 1, 1, 2, 6, 4, 1; 1, 1, 2, 6, 12, 5, 1; 1, 1, 2, 6, 24, 20, 6, 1; 1, 1, 2, 6, 24, 60, 30, 7, 1; ...
Formula
Let A130460 = M, an infinite lower triangular matrix and V = [1, 1, 1, ...], the first row of an array. Perform M * V = second row, ...; (n+1)-th row = M * n-th row. The triangle = antidiagonals of the array.
Extensions
a(23) and a(38) corrected by Gionata Neri, Jun 22 2016
Comments