A130475 Prime numbers q of the form q=abs(x^2-y^3) such that p =A130474(n)= x^2+y^3 is prime and greater than q. (Prime numbers arising from A130474).
3, 23, 11, 73, 73, 191, 19, 229, 307, 199, 433, 199, 503, 431, 757, 233, 71, 991, 997, 577, 1439, 1367, 89, 2089, 2053, 1873, 521, 2593, 2677, 503, 2791, 3109, 3359, 3119, 3257, 2699, 673, 2591, 3457, 4231, 4597, 2269, 2969, 719, 1753, 5059, 1993, 5449
Offset: 1
Examples
a(4)= 73 because 73= abs(9^2-2^3)= abs(81 - 8 ) and A130474(4)= 89 =9^2+2^3= 81+8 ; A130474(4) > a(4) ; A130474(4) and a(4) are prime numbers, members of A000040. a(5)= 73 because 73=abs(10^2-3^3)= abs(100 - 27) and A130474(5)= 127 = 10^2+3^3= 100+27 ; A130474(5) > a(5) ; A130474(5) and a(5) are prime numbers, members of A000040. a(9)= 307 because 307= abs(6^2 - 7^3)=abs(36 - 343) and A130474(9)= 379 = 6^2+7^3= 36+343 ; A130474(9) > a(9) ; A130474(9) and a(9) are prime numbers, members of A000040.