This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A130493 #14 Nov 07 2024 20:37:09 %S A130493 1,2,2,6,6,6,24,24,24,24,120,120,120,120,120,720,720,720,720,720,720, %T A130493 5040,5040,5040,5040,5040,5040,5040,40320,40320,40320,40320,40320, %U A130493 40320,40320,40320,362880,362880,362880,362880,362880,362880,362880,362880,362880 %N A130493 Triangle read by rows in which row n contains n! repeated n times. %C A130493 Row sums = A001563: (1, 4, 18, 96, 600, 4320, ...). A130477(n,k) * A130478(n,k) = A130493(n,k). Example: take dot products of rows with equal numbers of terms in A130477 and A130478, (1, 3, 8, 12) dot (24, 8, 3, 2) = (24, 24, 24, 24). %F A130493 Triangle, n! repeated n times per row. %e A130493 First few rows of the triangle: %e A130493 1; %e A130493 2, 2; %e A130493 6, 6, 6; %e A130493 24, 24, 24, 24; %e A130493 ... %t A130493 Flatten[Table[Table[n!,{n}],{n,10}]] (* _Harvey P. Dale_, Dec 24 2014 *) %t A130493 Table[PadRight[{},n,n!],{n,10}]//Flatten (* _Harvey P. Dale_, Jul 04 2022 *) %o A130493 (Python) %o A130493 from math import isqrt %o A130493 from sympy import factorial %o A130493 def A130493(n): return factorial((m:=isqrt(k:=n<<1))+(k>m*(m+1))) # _Chai Wah Wu_, Nov 07 2024 %Y A130493 Cf. A001563, A130477, A130478. %K A130493 nonn,tabl %O A130493 1,2 %A A130493 _Gary W. Adamson_, May 31 2007 %E A130493 More terms from _Sean A. Irvine_, Jul 19 2022