This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A130517 #59 Aug 26 2024 09:55:24 %S A130517 1,2,1,3,1,2,4,2,1,3,5,3,1,2,4,6,4,2,1,3,5,7,5,3,1,2,4,6,8,6,4,2,1,3, %T A130517 5,7,9,7,5,3,1,2,4,6,8,10,8,6,4,2,1,3,5,7,9,11,9,7,5,3,1,2,4,6,8,10, %U A130517 12,10,8,6,4,2,1,3,5,7,9,11,13,11,9,7,5,3,1,2,4,6,8,10,12,14,12,10 %N A130517 Triangle read by rows: row n counts down from n in steps of 2, then counts up the remaining elements in the set {1,2,...,n}, again in steps of 2. %C A130517 Triangle read by rows in which row n lists the number of pairs of states of the subshells of the n-th shell of the nuclear shell model ordered by energy level in increasing order. %C A130517 Row n lists a permutation of the first n positive integers. %C A130517 If n is odd then row n lists the first (n+1)/2 odd numbers in decreasing order together with the first (n-1)/2 positive even numbers. %C A130517 If n is even then row n lists the first n/2 even numbers in decreasing order together with the first n/2 odd numbers. %C A130517 Row n >= 2, with its floor(n/2) last numbers taken as negative, lists the n different eigenvalues (in decreasing order) of the odd graph O(n). The odd graph O(n) has the (n-1)-subsets of a (2*n-1)-set as vertices, with two (n-1)-subsets adjacent if and only if they are disjoint. For example, O(3) is isomorphic to the Petersen graph. - _Miquel A. Fiol_, Apr 07 2024 %H A130517 Reinhard Zumkeller, <a href="/A130517/b130517.txt">Rows n = 1..120 of triangle, flattened</a> %H A130517 N. Bigss, <a href="https://doi.org/10.1017/CBO9780511608704">Algebraic Graph Theory</a>, Cambridge Univ. Press, Cambridge, 1974. %H A130517 Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations [of] Integer Sequences And Pairing Functions</a>, 2012, arXiv:1212.2732 [math.CO], 2012. %H A130517 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/OddGraph.html">Odd graph</a> %F A130517 a(n) = A162630(n)/2. - _Omar E. Pol_, Sep 02 2012 %F A130517 T(1,1) = 1; for n > 1: T(n,1) = T(n-1,1)+1 and T(n,k) = T(n-1,n-k+1), 1 < k <= n. - _Reinhard Zumkeller_, Dec 03 2012 %F A130517 From _Boris Putievskiy_, Jan 16 2013: (Start) %F A130517 a(n) = |2*A000027(n) - A003056(n)^2 - 2*A003056(n) - 3| + floor((2*A000027(n) - A003056(n)^2 - A003056(n))/(A003056(n)+3)). %F A130517 a(n) = |2*n - t^2 - 2*t - 3| + floor((2*n - t^2 - t)/(t+3)) where t = floor((-1+sqrt(8*n-7))/2). (End) %e A130517 A geometric model of the atomic nucleus: %e A130517 ......------------------------------------------------- %e A130517 ......|...-----------------------------------------...| %e A130517 ......|...|...---------------------------------...|...| %e A130517 ......|...|...|...-------------------------...|...|...| %e A130517 ......|...|...|...|...-----------------...|...|...|...| %e A130517 ......|...|...|...|...|...---------...|...|...|...|...| %e A130517 ......|...|...|...|...|...|...-...|...|...|...|...|...| %e A130517 ......i...h...g...f...d...p...s...p...d...f...g...h...i %e A130517 ......|...|...|...|...|...|.......|...|...|...|...|...| %e A130517 ......|...|...|...|...|.......1.......|...|...|...|...| %e A130517 ......|...|...|...|.......2.......1.......|...|...|...| %e A130517 ......|...|...|.......3.......1.......2.......|...|...| %e A130517 ......|...|.......4.......2.......1.......3.......|...| %e A130517 ......|.......5.......3.......1.......2.......4.......| %e A130517 ..........6.......4.......2.......1.......3.......5.... %e A130517 ......7.......5.......3.......1.......2.......4.......6 %e A130517 ....................................................... %e A130517 ...13/2.11/2.9/2.7/2.5/2.3/2.1/2.1/2.3/2.5/2.7/2.9/2.11/2 %e A130517 ......|...|...|...|...|...|...|...|...|...|...|...|...| %e A130517 ......|...|...|...|...|...|...-----...|...|...|...|...| %e A130517 ......|...|...|...|...|...-------------...|...|...|...| %e A130517 ......|...|...|...|...---------------------...|...|...| %e A130517 ......|...|...|...-----------------------------...|...| %e A130517 ......|...|...-------------------------------------...| %e A130517 ......|...--------------------------------------------- %e A130517 . %e A130517 Triangle begins: %e A130517 1; %e A130517 2, 1; %e A130517 3, 1, 2; %e A130517 4, 2, 1, 3; %e A130517 5, 3, 1, 2, 4; %e A130517 6, 4, 2, 1, 3, 5; %e A130517 7, 5, 3, 1, 2, 4, 6; %e A130517 8, 6, 4, 2, 1, 3, 5, 7; %e A130517 9, 7, 5, 3, 1, 2, 4, 6, 8; %e A130517 10, 8, 6, 4, 2, 1, 3, 5, 7, 9; %e A130517 ... %e A130517 Also: %e A130517 1; %e A130517 2, 1; %e A130517 3, 1, 2; %e A130517 4, 2, 1, 3; %e A130517 5, 3, 1, 2, 4; %e A130517 6, 4, 2, 1, 3, 5; %e A130517 7, 5, 3, 1, 2, 4, 6; %e A130517 8, 6, 4, 2, 1, 3, 5, 7; %e A130517 9, 7, 5, 3, 1, 2, 4, 6, 8; %e A130517 10, 8, 6, 4, 2, 1, 3, 5, 7, 9; %e A130517 ... %e A130517 In this view each column contains the same numbers. %e A130517 From _Miquel A. Fiol_, Apr 07 2024: (Start) %e A130517 Eigenvalues of the odd graphs O(n) for n=2..10: %e A130517 2, -1; %e A130517 3, 1, -2; %e A130517 4, 2, -1, -3; %e A130517 5, 3, 1, -2, -4; %e A130517 6, 4, 2, -1, -3, -5; %e A130517 7, 5, 3, 1, -2, -4, -6; %e A130517 8, 6, 4, 2, -1, -3, -5, -7; %e A130517 9, 7, 5, 3, 1, -2, -4, -6, -8; %e A130517 10, 8, 6, 4, 2, -1, -3, -5, -7, -9; %e A130517 ... (End) %p A130517 A130517 := proc(n,k) %p A130517 if k <= (n+1)/2 then %p A130517 n-2*(k-1) ; %p A130517 else %p A130517 1-n+2*(k-1) ; %p A130517 end if; %p A130517 end proc: # _R. J. Mathar_, Jul 21 2012 %t A130517 t[n_, 1] := n; t[n_, n_] := n-1; t[n_, k_] := Abs[2*k-n - If[2*k <= n+1, 2, 1]]; Table[t[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Oct 03 2013, from abs(A056951) *) %o A130517 (Haskell) %o A130517 a130517 n k = a130517_tabl !! (n-1) !! (k-1) %o A130517 a130517_row n = a130517_tabl !! (n-1) %o A130517 a130517_tabl = iterate (\row -> (head row + 1) : reverse row) [1] %o A130517 -- _Reinhard Zumkeller_, Dec 03 2012 %o A130517 (PARI) a130517_row(n) = my(v=vector(n), s=1, n1=0, n2=n+1); forstep(k=n, 1,-1, s=-s; if(s>0, n2--; v[n2]=k, n1++; v[n1]=k)); v \\ _Hugo Pfoertner_, Aug 26 2024 %Y A130517 Absolute values of A056951. Column 1 is A000027. Row sums are in A000217. %Y A130517 Cf. A130556, A130598, A130602. %Y A130517 Other versions are A004736, A212121, A213361, A213371. %Y A130517 Cf. A028310 (right edge), A000012 (central terms), A220073 (mirrored), A220053 (partial sums in rows), A375303. %K A130517 nonn,tabl,easy %O A130517 1,2 %A A130517 _Omar E. Pol_, Aug 08 2007