A130551 Numerators of partial sums for a series of (4/5)*Zeta(3).
1, 23, 1039, 58157, 1454021, 6854599, 30564710941, 244517610353, 37411196579209, 64619338818497, 86008340157931507, 8951094220597141, 334314418075511195849, 334314418069194908729, 48475590620225838341897
Offset: 1
Examples
Rationals r(n): [1, 23/24, 1039/1080, 58157/60480, 1454021/1512000, ...].
References
- A. van der Poorten, A proof that Euler missed..., Math. Intell. 1(1979)195-203; reprinted in Pi: A Source Book, pp. 439-447, eq. 2, with a proof in section 3 and further references in footnote 4.
- L. Berggren, T. Borwein and P. Borwein, Pi: A Source Book, Springer, New York, 1997, p. 687.
Links
- W. Lang, Rationals and limit.
Formula
a(n)=numerator(r(n)), n>=1, with the rationals r(n) defined above and taken in lowest terms.
Comments