This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A130557 #10 Aug 30 2019 03:57:20 %S A130557 1,10,409,10297,8031,394019,9462581,766743461,8435956183, %T A130557 1020884056543,13272613316059,2243198436149971,2243285892433171, %U A130557 2243347792046947,305101392961615867,88175602457796281563,186150555360181760633 %N A130557 Numerators of partial sums of a series for 6*(5 - 4*Zeta(3)). %C A130557 Denominators are given in A130558. %C A130557 The rational sequence r(n) = 24*Sum_{j=2..n} 1/(j^3*(j^2-1)), n >= 2, tends, in the limit n->infinity, to 6*(5-4*Zeta(3)) which is approximately 1.15063433. %D A130557 Z. A. Melzak, Companion to concrete mathematics,( Vol.I), Wiley, New York, 1973, pp. 83-84. %H A130557 W. Lang, <a href="/A130557/a130557.txt">Rationals and limit</a>. %F A130557 a(n) = numerator(r(n)), n >= 2, with the rationals r(n) defined above. %e A130557 Rationals r(n), n >= 2: 1, 10/9, 409/360, 10297/9000, 8031/7000, 394019/343000, .... %Y A130557 Cf. A130551/A130552 with the limit (4/5)*Zeta(3). %K A130557 nonn,frac,easy %O A130557 2,2 %A A130557 _Wolfdieter Lang_, Jul 13 2007