This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A130570 #10 Mar 03 2023 07:47:39 %S A130570 7,11,19,23,29,31,37,43,47,53,59,61,67,71,73,79,83,89,101,103,107,109, %T A130570 127,131,137,139,149,151,157,163,167,173,179,181,191,197,199,211,223, %U A130570 227,229,233,239,251,263,269,271,277,281,283,293,307,311,313,317,331 %N A130570 Primes of the form k*2^m + 1 for k odd, m >=1, that are not Proth primes (A080076) (2^m <= k). %e A130570 a(1)=7 because 7 is prime, 7 = 3*2^1 + 1 and 2^1 <= 3, %e A130570 a(2)=11 because 11 is prime, 11 = 5*2^1 + 1 and 2^1 <= 5, %e A130570 a(3)=19 because 19 is prime, 19 = 9*2^1 + 1 and 2^1 <= 9, ... %p A130570 ts_neProth_prime:=proc(n) local i,j,k,a,am; k := 2: am:= [ ]: for i from 1 to n do for j from 1 by 2 to n do a := j*k^(i)+1: if (k^(i) <= j and isprime(a)=true) then am := [op(am), a ]: fi: od: od: RETURN( sort(am) ) end: ts_neProth_prime(400); %p A130570 # Second Maple program %p A130570 q := n -> (isprime(n) and n >= 2^(2*padic:-ordp(n-1,2))): %p A130570 select(q, [$3..331])[]; # _Lorenzo Sauras Altuzarra_, Mar 03 2023 %o A130570 (PARI) isok(p) = if (isprime(p), my(m=valuation(p-1,2)); (m>=1) && ((p-1) >= 4^m)); \\ _Michel Marcus_, Mar 03 2023 %Y A130570 Cf. A080075. %K A130570 nonn %O A130570 1,1 %A A130570 _Jani Melik_, Aug 10 2007