This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A130595 #98 Jun 22 2024 16:18:21 %S A130595 1,-1,1,1,-2,1,-1,3,-3,1,1,-4,6,-4,1,-1,5,-10,10,-5,1,1,-6,15,-20,15, %T A130595 -6,1,-1,7,-21,35,-35,21,-7,1,1,-8,28,-56,70,-56,28,-8,1,-1,9,-36,84, %U A130595 -126,126,-84,36,-9,1,1,-10,45,-120,210,-252,210,-120,45,-10,1,-1,11,-55,165,-330,462,-462,330,-165,55,-11,1 %N A130595 Triangle read by rows: lower triangular matrix which is inverse to Pascal's triangle (A007318) regarded as a lower triangular matrix. %C A130595 Triangle T(n,k), read by rows, given by [-1,0,0,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. %C A130595 Coefficients of the polynomials generated by the e.g.f. exp(x*t)*exp(-t). - _Peter Luschny_, Jul 13 2009 %C A130595 Riordan array (1/(1+x), x/(1+x)). - _Philippe Deléham_, Nov 29 2009 %C A130595 Multiplication of a sequence (written as column vector) by this matrix (to the left) yields the inverse Binomial transform of the sequence. - _M. F. Hasler_, Nov 01 2014 %C A130595 From _Tom Copeland_, Nov 16 2016: (Start) %C A130595 This signed Pascal matrix IP and the Pascal matrix P contain the coefficients of a prototypical pair of Appell polynomial sequences that are inverse under umbral composition with e.g.f.s e^((x-1)*t) = e^(-t) e^(xt) = f(t) e^(xt) and e^((x+1)t) = e^t e^(xt) = g(t) e^(xt) and row polynomials q_n(x) = (x-1)^n and p_n(x) = (x+1)^n, respectively. The inverse property for an Appell pair is reflected in IP*P = identity matrix, f(t) = 1/g(t), the umbral relation p_n(q.(x)) = x^n = q_n(p.(x)), and their respective raising operators R_(Ip) = x - h(D) and R_P = x + h(D) differing only in the sign of the differential term (h(D) = 1, in this case). The lowering operator for an Appell sequence is L = D = d/dx with L p_n(x) = n*p_(n-1)(x), and the raising operator is defined by R p_n(x) = p_(n+1)(x). %C A130595 The related signed Pascal matrix M with M(n,k) = (-1)^n IP(n,k) = (-1)^k P(n,k) has the e.g.f. e^((1-x)t) = e^t e^(-xt), and w_n(x) = (1-x)^n is not an Appell sequence, but it is a Sheffer sequence with lowering and raising operators L = -D and R = 1 - x, and M = M^(-1) since w_n(w.(x)) = (1-w.(x))^n = sum_{k = 0,..,n} binomial(n,k) (-1)^k w_k(x) = (1-(1-x))^n = x^n. %C A130595 Umbral composition of a pair of Sheffer polynomial sequences, of which Appell sequences are a special class, is equivalent to the multiplication of their respective coefficient matrices. %C A130595 (End) %H A130595 Reinhard Zumkeller, <a href="/A130595/b130595.txt">Rows n = 0..125 of triangle, flattened</a> %H A130595 Shishuo Fu, Yaling Wang, <a href="https://arxiv.org/abs/1908.03912">Bijective recurrences concerning two Schröder triangles</a>, arXiv:1908.03912 [math.CO], 2019. %H A130595 Tian-Xiao He and Renzo Sprugnoli, <a href="http://dx.doi.org/10.1016/j.disc.2008.11.021">Sequence characterization of Riordan arrays</a>, Discrete Math. 309 (2009), no. 12, 3962-3974. [_N. J. A. Sloane_, Nov 26 2011] %H A130595 Wikipedia, <a href="http://en.wikipedia.org/wiki/Harmonic_number#Calculation">Relation between binomial coefficients and harmonic numbers</a>. %H A130595 <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a> %F A130595 T(n,k) = (-1)^(n-k)*binomial(n,k) = (-1)^(n-k)*A007318(n,k). %F A130595 T(n,k) = T(n-1,k-1) - T(n-1,k). - _Philippe Deléham_, Oct 10 2011 %F A130595 G.f.: 1/(1+x-x*y). - _R. J. Mathar_, Aug 11 2015 [corrected by _Anders Claesson_, Nov 28 2015] %F A130595 Conjecture from _Dale Gerdemann_, Nov 28 2015: %F A130595 T(n,k) = (n-k+1)*T(n-1,k-1) + (k-1)*T(n-1,k). %F A130595 Proof from _Anders Claesson_, Nov 29 2015: %F A130595 It follows from T(n,k) = T(n-1,k-1) - T(n-1,k) and n*T(n-1,k-1) = k*T(n,k) that: (n-k+1)*T(n-1,k-1) + (k-1)*T(n-1,k) = n*T(n-1,k-1) - (k-1)*T(n-1,k-1) + (k-1)*T(n-1,k) = n*T(n-1,k-1) - (k-1)*(T(n-1,k-1) - T(n-1,k)) = n*T(n-1,k-1) - (k-1)*T(n,k) = n*T(n-1,k-1) - k*T(n,k) + T(n,k) = T(n,k). QED %F A130595 (-1)^(n+1) Sum_{k=1..n} T(n,k)/k = Sum_{k=1..n} 1/k = H(n) where H(n) is the n-th harmonic number. For a proof see link "Relation between binomial coefficients and harmonic numbers". - _Wolfgang Hintze_, Oct 22 2016 %F A130595 T(n,k) = binomial(-1-k,n-k). - _Robert A. Russell_, Jan 16 2020 %F A130595 From _G. C. Greubel_, Jun 22 2024: (Start) %F A130595 T(n, n-k) = (-1)^n*T(n, k). %F A130595 Sum_{k=0..n} T(n, k) = A000007(n). %F A130595 Sum_{k=0..n} (-1)^k*T(n, k) = A122803(n). %F A130595 Sum_{k=0..floor(n/2)} T(n-k, k) = A039834(n+1). %F A130595 Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A049347(n). %F A130595 Sum_{k=0..n} k*T(n, k) = A063524(n). %F A130595 Sum_{k=0..n} (-1)^k*k*T(n, k) = A085750(n+1). %F A130595 Sum_{k=0..n} (k+1)*T(n, k) = A019590(n). (End) %e A130595 Triangle begins with T(0,0): %e A130595 1; %e A130595 -1, 1; %e A130595 1, -2, 1; %e A130595 -1, 3, -3, 1; %e A130595 1, -4, 6, -4, 1; %e A130595 -1, 5, -10, 10, -5, 1; %e A130595 1, -6, 15, -20, 15, -6, 1; %e A130595 -1, 7, -21, 35, -35, 21, -7, 1; %e A130595 1, -8, 28, -56, 70, -56, 28, -8, 1; %e A130595 -1, 9, -36, 84, -126, 126, -84, 36, -9, 1; %e A130595 ... %e A130595 As polynomials: %e A130595 + 1; %e A130595 - 1 + 1 x; %e A130595 + 1 - 2 x + 1 x^2; %e A130595 - 1 + 3 x - 3 x^2 + 1 x^3; %e A130595 + 1 - 4 x + 6 x^2 - 4 x^3 + 1 x^4; %p A130595 A130595 := proc(n,k) %p A130595 (-1)^(n+k)*binomial(n,k) ; %p A130595 end proc: # _R. J. Mathar_, Feb 13 2013 %t A130595 nmax = 11; t[n_, k_] := (-1)^(n-k)*Binomial[n, k]; Flatten[ Table[ t[n, k], {n, 0, nmax}, {k, 0, n}] ] (* _Jean-François Alcover_, Dec 01 2011 *) %t A130595 Table[Binomial[-1-k, n-k],{n,0,11},{k,0,n}]//Flatten (* _Robert A. Russell_, Jan 16 2020 *) %o A130595 (Haskell) %o A130595 a130595 n = a130595_list !! n %o A130595 a130595_list = concat $ iterate ([-1,1] *) [1] %o A130595 instance Num a => Num [a] where %o A130595 fromInteger k = [fromInteger k] %o A130595 (p:ps) + (q:qs) = p + q : ps + qs %o A130595 ps + qs = ps ++ qs %o A130595 (p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs %o A130595 _ * _ = [] %o A130595 -- _Reinhard Zumkeller_, Apr 02 2011 %o A130595 (Haskell) %o A130595 a130595 n k = a130595_tabl !! n !! k %o A130595 a130595_row n = a130595_tabl !! n %o A130595 a130595_tabl = iterate (\row -> zipWith (-) ([0] ++ row) (row ++ [0])) [1] %o A130595 -- _Reinhard Zumkeller_, Apr 13 2013 %o A130595 (PARI) A130595(n,k)=(-1)^(n+k)*binomial(n,k) \\ _M. F. Hasler_, Nov 01 2014 %o A130595 (Magma) [(-1)^(n+k)*Binomial(n,k): k in [0..n], n in [0..15]]; // _G. C. Greubel_, Jun 22 2024 %o A130595 (SageMath) flatten([[(-1)^(n+k)*binomial(n,k) for k in range(n+1)] for n in range(16)]) # _G. C. Greubel_, Jun 22 2024 %Y A130595 Cf. A007318, A084938. %Y A130595 Sums include: A000007 (row sums), A019590, A039834 (diagonal sums), A049347 (alternating sign diagonal sums), A063524, A085750, A122803 (alternating sign sums). %K A130595 sign,nice,tabl %O A130595 0,5 %A A130595 _Philippe Deléham_, Jun 17 2007 %E A130595 Edited by _N. J. A. Sloane_, Nov 27 2011