cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130621 List the first term of each triple of consecutive primes with the property that their sum is the square of a prime.

This page as a plain text file.
%I A130621 #8 Dec 12 2022 18:03:28
%S A130621 13,37,277,313,613,7591,8209,12157,23053,32233,42953,44887,105649,
%T A130621 225769,245941,258707,287671,331333,342049,346111,347443,393853,
%U A130621 560719,721267,867253,1001089,1064431,1219849,1545127,1556623,1617727,1752607
%N A130621 List the first term of each triple of consecutive primes with the property that their sum is the square of a prime.
%H A130621 Robert Israel, <a href="/A130621/b130621.txt">Table of n, a(n) for n = 1..3000</a>
%e A130621 (37, 41, 43) is a triple of consecutive prime numbers; their sum is 121 which is a prime squared. Hence 37 is in the sequence.
%p A130621 f:= proc(n) local p,q,r;
%p A130621    q:= prevprime(floor(n/3));
%p A130621    p:= prevprime(q);
%p A130621    r:= nextprime(q);
%p A130621    if p+q+r = n then return p
%p A130621    elif p+q+r < n then
%p A130621      while p+q+r < n do
%p A130621        p:= q; q:= r; r:= nextprime(r);
%p A130621      od;
%p A130621      if p+q+r = n then return p fi
%p A130621    else
%p A130621      while p+q+r > n do
%p A130621        r:= q; q:= p; p:= prevprime(p);
%p A130621      od;
%p A130621      if p+q+r = n then return p fi;
%p A130621    fi;
%p A130621    false
%p A130621 end proc:
%p A130621 R:= NULL: count:= 0:
%p A130621 p:= 3:
%p A130621 while count < 100 do
%p A130621   p:= nextprime(p);
%p A130621   v:= f(p^2);
%p A130621   if v::integer then
%p A130621     R:= R,v; count:= count+1;
%p A130621   fi
%p A130621 od:
%p A130621 R; # _Robert Israel_, Sep 18 2022
%t A130621 a={};For[n=1,n<100000,n++,If[PrimeQ[Sqrt[Prime[n]+Prime[n+1]+Prime[n+2]]], AppendTo[a, Prime[n]]]]; a
%t A130621 Select[Partition[Prime[Range[132000]],3,1],PrimeQ[Sqrt[Total[#]]]&][[All,1]] (* _Harvey P. Dale_, Dec 12 2022 *)
%K A130621 nonn
%O A130621 1,1
%A A130621 _J. M. Bergot_, Jun 18 2007
%E A130621 Edited and extended by _Stefan Steinerberger_, Jun 23 2007