cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130628 Related to the minimal number of periodic orbits of periods guaranteed by Sharkovskii's theorem.

This page as a plain text file.
%I A130628 #22 Nov 06 2018 06:44:10
%S A130628 1,1,0,1,0,2,0,3,0,6,1,9,2,18,4,30,8,56,16,99,32,186,64,337,128,635,
%T A130628 256,1177,512,2220,1024,4176,2048,7930,4098,15044,8200,28738,16410,
%U A130628 54937,32848,105474,65760,202845,131668,391316,263680,756223,528128
%N A130628 Related to the minimal number of periodic orbits of periods guaranteed by Sharkovskii's theorem.
%C A130628 Bau-Sen Du's [1985/2007] Table 1, p. 6, has this sequence as the 6th column, denoted A_{n,5}.
%H A130628 Bau-Sen Du, <a href="https://arxiv.org/abs/0706.2297">The Minimal Number of Periodic Orbits of Periods Guaranteed in Sharkovskii's Theorem</a>, arXiv:0706.2297 [math.DS], 2007; Bull. Austral. Math. Soc. 31(1985), 89-103. Corrigendum: 32 (1985), 159.
%t A130628 max = 50; Clear[b1, b2];
%t A130628 For[n = 1, n <= max, n++,
%t A130628 For[j = 1, j <= n, j++, b1[1][j, n] = 0; b1[2][j, n] = 1; b2[1][j, n] = b2[2][j, n] = 0]; b2[1][n, n] = b2[2][n, n] = 1];
%t A130628 For[k = 3, k <= max, k++,
%t A130628 For[n = 1, n <= max, n++,
%t A130628 For[j = 1, j <= n-1, j++, b1[k][j, n] = b1[k-2][1, n] + b1[k-2][j+1, n]; b2[k][j, n] = b2[k-2][1, n] + b2[k-2][j+1, n]]; b1[k][n, n] = b1[k-2][1, n] + b1[k-1][n, n]; b2[k][n, n] = b2[k-2][1, n] + b2[k-1][n, n]]];
%t A130628 phin[n_] := Table[b2[m][n, n] + 2 Sum[If[m + 2 - 2j > 0, b1[m + 2 - 2j][j, n], 0], {j, 1, n}], {m, 1, max}];
%t A130628 MT[s_List] := Table[DivisorSum[n, MoebiusMu[#] s[[n/#]] &]/n, {n, 1, Length[s]}];
%t A130628 MT[phin[5]] (* _Jean-François Alcover_, Nov 06 2018, adapted from _Max Alekseyev_'s PARI script *)
%o A130628 (PARI) \\ implementation of MT() and phin() is given in A006207
%o A130628 MT(phin(5)) \\ sequence A_{n,5} \\ _Max Alekseyev_
%Y A130628 Cf. A006206 (A_{n,1}), A006207 (A_{n,2}), A006208 (A_{n,3}), A006209 (A_{n,4}), A208092 (A_{n,6}), A006210 (D_{n,2}), A006211 (D_{n,3}), A094392.
%K A130628 nonn
%O A130628 1,6
%A A130628 _Jonathan Vos Post_, Jun 18 2007
%E A130628 Terms a(32) onward from _Max Alekseyev_, Feb 23 2012