This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A130652 #19 Jun 17 2025 00:43:30 %S A130652 9,119,1329,14639,161049,1771559,19487169,214358879,2357947689, %T A130652 25937424599,285311670609,3138428376719,34522712143929, %U A130652 379749833583239,4177248169415649,45949729863572159,505447028499293769,5559917313492231479,61159090448414546289,672749994932560009199 %N A130652 a(n) = 11^n - 2. %C A130652 There are only two known primes in a(n): a(4) = 14639 and a(6) = 1771559 (see A128472 = smallest prime of the form (2n-1)^k - 2 for k > (2n-1), or 0 if no such number exists). 3 divides a(2k-1). 7 divides a(3k-1). 13 divides a(12k-5). 17 divides a(16k-14). %C A130652 Final digit of a(n) is 9. %C A130652 Final two digits of a(n) are periodic with period 10: a(n) mod 100 = {09, 19, 29, 39, 49, 59, 69, 79, 89, 99}. %C A130652 Final three digits of a(n) are periodic with period 50: a(n) mod 1000 = {009, 119, 329, 639, 049, 559, 169, 879, 689, 599, 609, 719, 929, 239, 649, 159, 769, 479, 289, 199, 209, 319, 529, 839, 249, 759, 369, 079, 889, 799, 809, 919, 129, 439, 849, 359, 969, 679, 489, 399, 409, 519, 729, 039, 449, 959, 569, 279, 089, 999}. %H A130652 Vincenzo Librandi, <a href="/A130652/b130652.txt">Table of n, a(n) for n = 1..300</a> %H A130652 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (12,-11). %F A130652 a(n) = 11*a(n-1) + 20; a(1)=9. - _Vincenzo Librandi_, Jun 08 2011 %F A130652 From _Elmo R. Oliveira_, Jun 16 2025: (Start) %F A130652 G.f.: x*(11*x+9)/((11*x-1)*(x-1)). %F A130652 E.g.f.: 1 + exp(x)*(exp(10*x) - 2). %F A130652 a(n) = 12*a(n-1) - 11*a(n-2) for n > 2. (End) %t A130652 LinearRecurrence[{12, -11},{9, 119},17] (* _Ray Chandler_, Aug 26 2015 *) %o A130652 (Magma) [11^n - 2: n in [1..50]]; // _Vincenzo Librandi_, Jun 08 2011 %Y A130652 Cf. A001020, A024127, A034524. Cf. A104096 = Largest prime <= 11^n. Cf. A084714 = smallest prime of the form (2n-1)^k - 2, or 0 if no such number exists. Cf. A128472 = smallest prime of the form (2n-1)^k - 2 for k>(2n-1), or 0 if no such number exists. Cf. A014224, A109080, A090669, A128455, A128457, A128458, A128459, A128460, A128461. %K A130652 nonn,easy %O A130652 1,1 %A A130652 _Alexander Adamchuk_, Jun 20 2007