This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A130682 #12 Feb 16 2025 08:33:06 %S A130682 1526339511795367850762323, %T A130682 187024220802620550798074497168768775337833066860651232788557036897081398718783708709 %N A130682 Numerator of generalized harmonic number H(p-1,p^2) = Sum_{k=1..p-1} 1/k^(p^2) divided by p^4 for prime p>3. %C A130682 The generalized harmonic number is H(n,m) = Sum_{k=1..n} 1/k^m. The numerator of the generalized harmonic number H(p-1,p) is divisible by p^3 for prime p>3. See A119722(n). The numerator of the generalized harmonic number H(p-1,p^2) is divisible by p^4 for prime p>3. In general, the numerator of the generalized harmonic number H(p-1,p^k) is divisible by p^(k+2) for prime p>3. %H A130682 Alexander Adamchuk, Jun 29 2007, <a href="/A130682/b130682.txt">Table of n, a(n) for n = 3..6</a> %H A130682 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/WolstenholmesTheorem.html">Wolstenholme's Theorem</a> %H A130682 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HarmonicNumber.html">Harmonic Number</a> %F A130682 a(n) = Numerator[ Sum[ 1/k^(Prime[n]^2), {k,1,Prime[n]-1} ] ] / Prime[n]^4 for n>2. %e A130682 Prime[3] = 5. %e A130682 a(3) = numerator[ 1 + 1/2^25 + 1/3^25 + 1/4^25 ] / 5^4 = 953962194872104906726451875/625 = 1526339511795367850762323. %t A130682 Table[ Numerator[ Sum[ 1/k^(Prime[n]^2), {k,1,Prime[n]-1} ] ] / Prime[n]^4, {n,3,10} ] %Y A130682 Cf. A119722 = Numerator of generalized harmonic number H(p-1, p)= Sum[ 1/k^p, {k, 1, p-1}] divided by p^3 for prime p>3. %K A130682 frac,nonn,uned,bref %O A130682 3,1 %A A130682 _Alexander Adamchuk_, Jun 29 2007