cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130696 Numbers k such that 2^k does not contain all ten decimal digits.

This page as a plain text file.
%I A130696 #38 Jul 13 2021 19:42:38
%S A130696 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,
%T A130696 26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,
%U A130696 49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,69,71,72,73,74,75,76,77,78,80,81,83,85,86,90,91,92,93,99,102,107,108,153,168
%N A130696 Numbers k such that 2^k does not contain all ten decimal digits.
%C A130696 It is believed that 168 is the last number in this list; 2^168 is a 51-digit number that contains all the digits except (oddly enough) 2.
%C A130696 There are no more terms less than 10^10. - _David Radcliffe_, Apr 11 2019
%e A130696 20 is in this list because 2^20 = 1048576, which doesn't contain all ten digits.
%e A130696 68 is the first number not in this list; 2^68 = 295147905179352825856 and this contains all ten digits.
%t A130696 A2 := {}; Do[If[Length[Union[ IntegerDigits[2^ n]]] != 10, A2 = Join[A2, {n}]], {n, 1, 3000}]; Print[A2]
%t A130696 Select[Range[10^6]-1,MemberQ[DigitCount[2^#],0]&] (* _Hans Rudolf Widmer_, Jun 23 2021 *)
%o A130696 (Python) print([n for n in range(1000) if len(set(str(2**n))) < 10]) # _David Radcliffe_, Apr 11 2019
%o A130696 (PARI) hasalldigits(n) = #vecsort(digits(n), , 8)==10
%o A130696 is(n) = !hasalldigits(2^n) \\ _Felix Fröhlich_, Apr 11 2019
%Y A130696 Cf. A007377, A062518, A090493.
%Y A130696 Complement of A130694.
%K A130696 base,nonn
%O A130696 1,3
%A A130696 _Greg Dresden_, Jul 10 2007
%E A130696 a(1) = 0 prepended by _David Radcliffe_, Apr 11 2019