cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130704 Palindromic primes whose squares are the sum of three consecutive primes.

This page as a plain text file.
%I A130704 #8 Jul 26 2023 17:20:05
%S A130704 7,11,151,191,929,10301,14741,15451,76667,98689,1062601,1153511,
%T A130704 1175711,1215121,1300031,1317131,1489841,1597951,3075703,3127213,
%U A130704 3362633,3441443,7354537,7472747,7662667,9127219,9196919,9451549,9561659
%N A130704 Palindromic primes whose squares are the sum of three consecutive primes.
%C A130704 The number of such palindromic primes less than 10^n: 1, 2, 5, 5, 10, 10, 30, 30, 141, 141, 843, 843, 5856, 5856, 42675, 42675, ....
%H A130704 Robert G. Wilson v, <a href="/A130704/b130704.txt">Table of n, for n = 1..1000</a>.
%F A130704 Intersection of A002385 and A034961.
%e A130704 7^2 = 49 = 13 + 17 + 19.
%e A130704 11^2 = 121 = 37 + 41 + 43.
%t A130704 NextPalindrome[n_] := Block[{l = Floor[Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[idn, Ceiling[l/2]]]] > FromDigits[ Take[idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[ idn, Ceiling[l/2]], Reverse[Take[idn, Floor[l/2]]]]], idfhn = FromDigits[ Take[idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits[ idfhn], Drop[ Reverse[ IntegerDigits[ idfhn]], Mod[l, 2]]]]]]]];
%t A130704 PrevPrim[n_] := Block[{k = n - 1}, While[ ! PrimeQ[k], k-- ]; k]; NextPrim[n_] := Block[{k = n + 1}, While[ ! PrimeQ[k], k++ ]; k]; fQ[n_] := Block[{p, q, r, s}, q = PrevPrim[ Ceiling[n^2/3]]; p = PrevPrim@q; r = NextPrim[ Floor[n^2/3]]; s = NextPrim@r; n^2 == p + q + r || n^2 == q + r + s];
%t A130704 pd = 6; lst = {}; Do[pd = NextPalindrome@pd; If[ PrimeQ@pd && fQ@pd, AppendTo[lst, pd]], {n, 10^8}]; lst
%t A130704 Select[Sqrt[#]&/@(Total/@Partition[Prime[Range[10^7]],3,1]),PalindromeQ[#]&&PrimeQ[#]&] (* The program generates the first 8 terms of the sequence. To generate more, increase the Range constant, but the program may take a long time to run. *) (* _Harvey P. Dale_, Jul 26 2023 *)
%K A130704 base,nonn,less
%O A130704 1,1
%A A130704 _Robert G. Wilson v_, Jun 19 2007