This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A130716 #28 Mar 11 2020 22:51:37 %S A130716 1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, %T A130716 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, %U A130716 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 %N A130716 a(0)=a(1)=a(2)=1, a(n)=0 for n>2. %C A130716 With different signs this sequence is the convolutional inverse of the Fibonacci sequence: 1, -1, -1, 0, 0, ... - _Tanya Khovanova_, Jul 14 2007 %C A130716 Inverse binomial transform of A000124. - _R. J. Mathar_, Jun 13 2008 %C A130716 Partial sums give A158799. [_Jaroslav Krizek_, Dec 06 2009] %H A130716 Andrei Asinowski, Cyril Banderier, Valerie Roitner, <a href="https://lipn.univ-paris13.fr/~banderier/Papers/several_patterns.pdf">Generating functions for lattice paths with several forbidden patterns</a>, (2019). %F A130716 Given g.f. A(x), then B(a) = A(q) / q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = v - u * (u - 2). - _Michael Somos_, Oct 22 2013 %F A130716 Euler transform of length 3 sequence [ 1, 0, -1]. - _Michael Somos_, Oct 22 2013 %F A130716 G.f. is third cyclotomic polynomial. %F A130716 G.f.: (1 - x^3) / (1 - x). %F A130716 Convolution inverse is A049347. - _Michael Somos_, Oct 22 2013 %e A130716 G.f. = 1 + x + x^2. %e A130716 G.f. = 1/q + 1 + q. %t A130716 a[ n_] := Boole[ n>=0 && n<=2]; (* _Michael Somos_, Oct 22 2013 *) %o A130716 (PARI) {a(n) = n>=0 && n<=2}; /* _Michael Somos_, Oct 22 2013 */ %Y A130716 Cf. A049347. %K A130716 easy,nonn %O A130716 0,1 %A A130716 _Paul Curtz_ and _Tanya Khovanova_, Jul 01 2007