This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A130750 #14 Sep 08 2022 08:45:30 %S A130750 1,3,8,17,33,64,127,255,512,1025,2049,4096,8191,16383,32768,65537, %T A130750 131073,262144,524287,1048575,2097152,4194305,8388609,16777216, %U A130750 33554431,67108863,134217728,268435457,536870913,1073741824,2147483647 %N A130750 Binomial transform of A010882. %C A130750 The first sequence of "less twisted numbers"; this sequence, A130752 and A130755 form a "suite en trio" (cf. reference, p. 130). %C A130750 First differences of A130755, second differences of A130752. %C A130750 Sequence equals its third differences: %C A130750 1 3 8 17 33 64 127 255 512 1025 %C A130750 2 5 9 16 31 63 128 257 513 %C A130750 3 4 7 15 32 65 129 256 %C A130750 1 3 8 17 33 64 127 %D A130750 P. Curtz, Exercise Book, manuscript, 1995. %H A130750 G. C. Greubel, <a href="/A130750/b130750.txt">Table of n, a(n) for n = 0..1000</a> %H A130750 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,2). %F A130750 G.f.: (1+2*x^2)/((1-2*x)*(1-x+x^2)). %F A130750 a(0) = 1; a(1) = 3; a(2) = 8; for n > 2, a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3). %F A130750 a(n) = 2^(n+1) + A128834(n+4). %F A130750 a(0) = 1; for n > 0, a(n) = 2*a(n-1) + A057079(n-1). %t A130750 CoefficientList[Series[(1+2*x^2)/((1-2*x)*(1-x+x^2)), {x, 0, 50}], x] (* or *) LinearRecurrence[{3,-3,2}, {1,3,8}, 30] (* _G. C. Greubel_, Jan 15 2018 *) %o A130750 (Magma) m:=31; S:=[ [1, 2, 3][(n-1) mod 3 +1]: n in [1..m] ]; [ &+[ Binomial(i-1, k-1)*S[k]: k in [1..i] ]: i in [1..m] ]; // _Klaus Brockhaus_, Aug 03 2007 %o A130750 (Magma) I:=[1,3,8]; [n le 3 select I[n] else 3*Self(n-1) - 3*Self(n-2) + 2*Self(n-3): n in [1..30]]; // _G. C. Greubel_, Jan 15 2018 %o A130750 (PARI) {m=31; v=vector(m); v[1]=1; v[2]=3; v[3]=8; for(n=4, m, v[n]=3*v[n-1]-3*v[n-2]+2*v[n-3]); v} \\ _Klaus Brockhaus_, Aug 03 2007 %o A130750 (PARI) {for(n=0, 30, print1(2^(n+1)+[ -1, -1,0, 1, 1, 0][n%6+1], ","))} \\ _Klaus Brockhaus_, Aug 03 2007 %Y A130750 Cf. A010882 (periodic (1, 2, 3)), A128834 (periodic (0, 1, 1, 0, -1, -1)), A057079 (periodic (1, 2, 1, -1, -2, -1)), A130752 (first differences), A130755 (second differences). %K A130750 nonn,easy %O A130750 0,2 %A A130750 _Paul Curtz_, Jul 13 2007 %E A130750 Edited and extended by _Klaus Brockhaus_, Aug 03 2007