This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A130755 #25 Sep 08 2022 08:45:30 %S A130755 3,4,7,15,32,65,129,256,511,1023,2048,4097,8193,16384,32767,65535, %T A130755 131072,262145,524289,1048576,2097151,4194303,8388608,16777217, %U A130755 33554433,67108864,134217727,268435455,536870912,1073741825,2147483649 %N A130755 Binomial transform of periodic sequence (3, 1, 2). %C A130755 The third sequence of "less twisted numbers"; this sequence, A130750 and A130752 form a "suite en trio" (cf. reference, p. 130). %C A130755 First differences of A130752, second differences of A130750. %C A130755 Sequence equals its third differences: %C A130755 3 4 7 15 32 65 129 256 511 1023 %C A130755 1 3 8 17 33 64 127 255 512 %C A130755 2 5 9 16 31 63 128 257 %C A130755 3 4 7 15 32 65 129 %D A130755 P. Curtz, Exercise Book, manuscript, 1995. %H A130755 G. C. Greubel, <a href="/A130755/b130755.txt">Table of n, a(n) for n = 0..1000</a> (terms 0..300 from Vincenzo Librandi) %H A130755 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,2). %F A130755 G.f.: (3-5*x+4*x^2)/((1-2*x)*(1-x+x^2)). %F A130755 a(0) = 3; a(1) = 4; a(2) = 7; for n > 2, a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3). %F A130755 a(n) = 2^(n+1) + A128834(n+2). %F A130755 a(0) = 3; for n > 0, a(n) = 2*a(n-1) + A057079(n+3). %t A130755 CoefficientList[Series[(3-5*x+4*x^2)/((1-2*x)*(1-x+x^2)), {x, 0, 50}], x] (* or *) LinearRecurrence[{3,-3,2}, {3,4,7}, 30] (* _G. C. Greubel_, Jan 15 2018 *) %o A130755 (Magma) m:=31; S:=[ [3, 1, 2][(n-1) mod 3 +1]: n in [1..m] ]; [ &+[ Binomial(i-1, k-1)*S[k]: k in [1..i] ]: i in [1..m] ]; // _Klaus Brockhaus_, Aug 03 2007 %o A130755 (Magma) I:=[3,4,7]; [n le 3 select I[n] else 3*Self(n-1) - 3*Self(n-2) + 2*Self(n-3): n in [1..30]]; // _G. C. Greubel_, Jan 15 2018 %o A130755 (PARI) {m=31; v=vector(m); v[1]=3; v[2]=4; v[3]=7; for(n=4, m, v[n]=3*v[n-1]-3*v[n-2]+2*v[n-3]); v} \\ _Klaus Brockhaus_, Aug 03 2007 %o A130755 (PARI) {for(n=0, 30, print1(2^(n+1)+[1, 0, -1, -1, 0, 1][n%6+1], ","))} \\ _Klaus Brockhaus_, Aug 03 2007 %Y A130755 Cf. A010882 (periodic (1, 2, 3)), A128834 (periodic (0, 1, 1, 0, -1, -1)), A057079 (periodic (1, 2, 1, -1, -2, -1)), A130750 (first differences), A130752 (second differences). %K A130755 nonn,easy %O A130755 0,1 %A A130755 _Paul Curtz_, Jul 13 2007 %E A130755 Edited and extended by _Klaus Brockhaus_, Aug 03 2007