A130777 Coefficients of first difference of Chebyshev S polynomials.
1, -1, 1, -1, -1, 1, 1, -2, -1, 1, 1, 2, -3, -1, 1, -1, 3, 3, -4, -1, 1, -1, -3, 6, 4, -5, -1, 1, 1, -4, -6, 10, 5, -6, -1, 1, 1, 4, -10, -10, 15, 6, -7, -1, 1, -1, 5, 10, -20, -15, 21, 7, -8, -1, 1, -1, -5, 15, 20, -35, -21, 28, 8, -9, -1, 1, 1, -6, -15, 35, 35, -56, -28, 36, 9, -10, -1, 1
Offset: 0
Examples
The triangle T(n,k) begins: n\k 0 1 1 3 4 5 6 7 8 9 10 11 12 13 14 15 ... 0: 1 1: -1 1 2: -1 -1 1 3: 1 -2 -1 1 4: 1 2 -3 -1 1 5: -1 3 3 -4 -1 1 6: -1 -3 6 4 -5 -1 1 7: 1 -4 -6 10 5 -6 -1 1 8: 1 4 -10 -10 15 6 -7 -1 1 9: -1 5 10 -20 -15 21 7 -8 -1 1 10: -1 -5 15 20 -35 -21 28 8 -9 -1 1 11: 1 -6 -15 35 35 -56 -28 36 9 -10 -1 1 12: 1 6 -21 -35 70 56 -84 -36 45 10 -11 -1 1 13: -1 7 21 -56 -70 126 84 -120 -45 55 11 -12 -1 1 14: -1 -7 28 56 -126 -126 210 120 -165 -55 66 12 -13 -1 1 15: 1 -8 -28 84 126 -252 -210 330 165 -220 -66 78 13 -14 -1 1 ... reformatted and extended - _Wolfdieter Lang_, Jul 31 2014. --------------------------------------------------------------------------- From _Paul Barry_, May 21 2009: (Start) Production matrix is -1, 1, -2, 0, 1, -2, -1, 0, 1, -4, 0, -1, 0, 1, -6, -1, 0, -1, 0, 1, -12, 0, -1, 0, -1, 0, 1, -20, -2, 0, -1, 0, -1, 0, 1, -40, 0, -2, 0, -1, 0, -1, 0, 1, -70, -5, 0, -2, 0, -1, 0, -1, 0, 1 (End) Row polynomials as first difference of S polynomials: P(3,x) = S(3,x) - S(2,x) = (x^3 - 2*x) - (x^2 -1) = 1 - 2*x - x^2 +x^3. Alternative triangle recurrence (see a comment above): T(6,2) = T(5,2) + T(5,1) = 3 + 3 = 6. T(6,3) = -T(5,3) + 0*T(5,1) = -(-4) = 4. - _Wolfdieter Lang_, Jul 31 2014
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964. Tenth printing, Wiley, 2002 (also electronically available).
Links
- Hyeong-Kwan Ju, On the sequence generated by a certain type of matrices, Honam Math. J. 39, No. 4, 665-675 (2017), Theorem 2.16.
- Wolfdieter Lang, The field Q(2cos(pi/n)), its Galois group and length ratios in the regular n-gon, arXiv:1210.1018 [math.GR], 2012-2017; see Definition 1, Lemma 6 and Remark 4.
- P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), p. 22-31 (formula 5).
- Index entries for sequences related to Chebyshev polynomials.
Crossrefs
Programs
-
Maple
A130777 := proc(n,k): (-1)^binomial(n-k+1,2)*binomial(floor((n+k)/2),k) end: seq(seq(A130777(n,k), k=0..n), n=0..11); # Johannes W. Meijer, Aug 08 2011
-
Mathematica
T[n_, k_] := (-1)^Binomial[n - k + 1, 2]*Binomial[Floor[(n + k)/2], k]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 14 2017, from Maple *)
-
Sage
@CachedFunction def A130777(n,k): if n< 0: return 0 if n==0: return 1 if k == 0 else 0 h = A130777(n-1,k) if n==1 else 0 return A130777(n-1,k-1) - A130777(n-2,k) - h for n in (0..9): [A130777(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012
Formula
Number triangle T(n,k) = (-1)^C(n-k+1,2)*C(floor((n+k)/2),k). - Paul Barry, May 21 2009
From Wolfdieter Lang, Jun 11 2011: (Start)
Row polynomials: P(n,x) = sum(k=0..n, T(n,k)*x^k) = R(2*n+1,sqrt(2+x)) / sqrt(2+x), with Chebyshev polynomials R with coefficients given in A127672 (scaled T-polynomials).
R(n,x) is called C_n(x) in Abramowitz and Stegun's handbook, p. 778, 22.5.11.
P(n,x) = S(n,x)-S(n-1,x), n>=0, S(-1,x)=0, with the Chebyshev S-polynomials (see the coefficient triangle A049310).
O.g.f. for row polynomials: P(x,z):= sum(n>=0, P(n,x)*z^n ) = (1-z)/(1-x*z+z^2).
(from the o.g.f. for R(2*n+1,x), n>=0, computed from the o.g.f. for the R-polynomials (2-x*z)/(1-x*z+z^2) (see A127672))
Proof of the Chebyshev connection from the o.g.f. for Riordan array property of this triangle (see the P. Barry comment above).
For the A- and Z-sequences of this Riordan array see a comment above. (End)
abs(T(n,k)) = A046854(n,k) = abs(A066170(n,k)) T(n,n-k) = A108299(n,k); abs(T(n,n-k)) = A065941(n,k). - Johannes W. Meijer, Aug 08 2011
From Wolfdieter Lang, Jul 31 2014: (Start)
Similar to the triangles A157751, A244419 and A180070 one can give for the row polynomials P(n,x) besides the usual three term recurrence another one needing only one recurrence step. This uses also a negative argument, namely P(n,x) = (-1)^(n-1)*(-1 + x/2)*P(n-1,-x) + (x/2)*P(n-1,x), n >= 1, P(0,x) = 1. Proof by computing the o.g.f. and comparing with the known one. This entails the alternative triangle recurrence T(n,k) = (-1)^(n-k)*T(n-1,k) + (1/2)*(1 + (-1)^(n-k))*T(n-1,k-1), n >= m >= 1, T(n,k) = 0 if n < k and T(n,0) = (-1)^floor((n+1)/2) = A057077(n+1). [P(n,x) recurrence corrected Aug 03 2014]
(End)
Extensions
New name and Chebyshev comments by Wolfdieter Lang, Jun 11 2010
Comments