cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130786 Decimal expansion of the complete elliptic integral of the first kind at sqrt(2)-1.

This page as a plain text file.
%I A130786 #22 Feb 04 2025 23:01:25
%S A130786 1,6,4,5,5,6,8,3,9,5,2,9,3,4,5,8,0,3,9,8,6,6,0,5,1,6,8,5,2,8,7,0,7,2,
%T A130786 7,1,5,9,9,9,5,5,7,0,2,6,0,5,5,4,0,1,0,3,7,2,6,5,2,9,2,1,3,7,1,4,9,5,
%U A130786 7,8,8,6,3,7,2,9,3,3,0,8,7,1,5,9,3,1,8,4,1,2,9,8,3,2,0,4,8,0,6,6,5,8,5,9,9,7
%N A130786 Decimal expansion of the complete elliptic integral of the first kind at sqrt(2)-1.
%H A130786 G. C. Greubel, <a href="/A130786/b130786.txt">Table of n, a(n) for n = 1..10000</a>
%H A130786 H. S. Wrigge, <a href="https://doi.org/10.1090/S0025-5718-1973-0324083-4">An Elliptic Integral Identity</a>, Math. Comp. 27 (1973) no 124, p <a href="http://www.ams.org/mathscinet-getitem?mr=0324083">839</a>.
%H A130786 I. J. Zucker and G. S. Joyce, <a href="https://doi.org/10.1017/S0305004101005254">Special values of the hypergeometric series II</a>, Math. Proc. Camb. Phil. Soc. 131 (2001) 309-319 (2.4)
%e A130786 Equals 1.64556839529345803986605168528707271599955702605540103726529213714...
%e A130786 which equals K[sqrt(2)-1] = Pi^(3/2)*sqrt[2+sqrt(2)]/(4*Gamma(5/8)*Gamma(7/8))
%e A130786 = 5.5683279... * 1.8477590650.. / ( 4 * 1.43451884..... * 1.0896523574...).
%p A130786 evalf(EllipticK(sqrt(2)-1));
%t A130786 RealDigits[Pi^(3/2)*Sqrt[2 + Sqrt@2]/(4 Gamma[5/8] Gamma[7/8]), 10, 111][[1]] (* _Robert G. Wilson v_, Jul 19 2007 *)
%t A130786 K[x_] := EllipticK[x^2/(x^2-1)]/Sqrt[1-x^2]; RealDigits[K[Sqrt[2]-1], 10, 111][[1]] (* _Jean-François Alcover_, Sep 22 2015 *)
%o A130786 (PARI) default(realprecision, 100); Pi^(3/2)*sqrt(2 + sqrt(2))/(4* gamma(5/8)*gamma(7/8)) \\ _G. C. Greubel_, Sep 27 2018
%o A130786 (PARI) ellK(sqrt(2)-1) \\ _Charles R Greathouse IV_, Feb 04 2025
%o A130786 (Magma) SetDefaultRealField(RealField(100)); R:= RealField(); Pi(R)^(3/2)*Sqrt(2 + Sqrt(2))/(4*Gamma(5/8)*Gamma(7/8)); // _G. C. Greubel_, Sep 27 2018
%K A130786 cons,nonn
%O A130786 1,2
%A A130786 _R. J. Mathar_, Jul 15 2007
%E A130786 More terms from _Robert G. Wilson v_, Jul 19 2007