This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A130812 #30 Feb 16 2025 08:33:06 %S A130812 64,448,1792,5376,13440,29568,59136,109824,192192,320320,512512, %T A130812 792064,1188096,1736448,2480640,3472896,4775232,6460608,8614144, %U A130812 11334400,14734720,18944640,24111360,30401280,38001600,47121984,57996288,70884352,86073856,103882240 %N A130812 If X_1,...,X_n is a partition of a 2n-set X into 2-blocks then a(n) is equal to the number of 6-subsets of X containing none of X_i, (i=1,...n). %C A130812 Number of n permutations (n>=6) of 3 objects u,v,z, with repetition allowed, containing n-6 u's. Example: if n=6 then n-6 =(0) zero u, a(1)=64. - _Zerinvary Lajos_, Aug 05 2008 %C A130812 a(n) is the number of 5-dimensional elements in an n-cross polytope where n>=6. - _Patrick J. McNab_, Jul 06 2015 %H A130812 Vincenzo Librandi, <a href="/A130812/b130812.txt">Table of n, a(n) for n = 6..1000</a> %H A130812 Milan Janjic, <a href="http://www.pmfbl.org/janjic/">Two Enumerative Functions</a> %H A130812 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CrossPolytope.html">Cross Polytope</a> %F A130812 a(n) = binomial(2*n,6) + binomial(n,2)*binomial(2*n-4,2) - n*binomial(2*n-2,4) - binomial(n,3). %F A130812 a(n) = C(n,n-6)*2^6, n>=6. - _Zerinvary Lajos_, Dec 07 2007 %F A130812 G.f.: 64*x^6/(1-x)^7. - _Colin Barker_, Mar 20 2012 %p A130812 a:=n->binomial(2*n,6)+binomial(n,2)*binomial(2*n-4,2)-n*binomial(2*n-2,4)-binomial(n,3); %p A130812 seq(binomial(n,n-6)*2^6,n=6..32); # _Zerinvary Lajos_, Dec 07 2007 %p A130812 seq(binomial(n+5, 6)*2^6, n=1..22); # _Zerinvary Lajos_, Aug 05 2008 %t A130812 CoefficientList[Series[64/(1-x)^7,{x,0,30}],x] (* _Vincenzo Librandi_, Mar 21 2012 *) %o A130812 (Magma) [Binomial(2*n,6)+Binomial(n,2)*Binomial(2*n-4,2)- n*Binomial(2*n-2,4)-Binomial(n,3): n in [6..40]]; // _Vincenzo Librandi_, Jul 09 2015 %Y A130812 Cf. A038207, A000079, A001787, A001788, A001789, A003472, A054849, A002409, A054851, A140325, A140354, A046092, A130809, A130810, A130811. - _Zerinvary Lajos_, Aug 05 2008 %K A130812 nonn,easy %O A130812 6,1 %A A130812 _Milan Janjic_, Jul 16 2007