cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130818 Decimal expansion of number whose Engel expansion is the sequence of squares, that is, 1, 4, 9, 16,...

This page as a plain text file.
%I A130818 #36 Jun 16 2025 12:19:01
%S A130818 1,2,7,9,5,8,5,3,0,2,3,3,6,0,6,7,2,6,7,4,3,7,2,0,4,4,4,0,8,1,1,5,3,3,
%T A130818 3,5,3,2,8,5,8,4,1,1,0,2,7,8,5,4,5,9,0,5,4,0,7,0,8,3,9,7,5,1,6,6,4,3,
%U A130818 0,5,3,4,3,2,3,2,6,7,6,3,4,2,7,2,9,5,1,7,0,8,8,5,5,6,4,8,5,8,9,8,9,8,4,5,9
%N A130818 Decimal expansion of number whose Engel expansion is the sequence of squares, that is, 1, 4, 9, 16,...
%D A130818 F. Engel "Entwicklung der Zahlen nach Stammbruechen" Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg. pp. 190-191, 1913.
%H A130818 Stephen Crowley, <a href="https://arxiv.org/abs/1207.1126">Two New Zeta Constants: Fractal String, Continued Fraction, and Hypergeometric Aspects of the Riemann Zeta Function</a>, arXiv:1207.1126 [math.NT], 2012, page 17.
%H A130818 F. Engel, <a href="/A006784/a006784.pdf">Entwicklung der Zahlen nach Stammbruechen</a>, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191. English translation by Georg Fischer, included with his permission.
%H A130818 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EngelExpansion.html">Engel Expansion</a>
%H A130818 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ModifiedBesselFunctionoftheFirstKind.html">Modified Bessel Function of the First Kind</a>
%F A130818 Equal to Sum_{n>=1} 1/n!^2 or BesselI(0,2) - 1. - _Gerald McGarvey_, Nov 12 2007
%F A130818 Equals A070910 - 1. - _R. J. Mathar_, Jun 13 2008
%e A130818 1.2795853023360672674372044408115333532858411...
%t A130818 RealDigits[BesselI[0, 2] - 1, 10, 105] // First (* _Jean-François Alcover_, Oct 01 2013 *)
%o A130818 (PARI) besseli(0,2)-1 \\ _Charles R Greathouse IV_, Oct 01 2013
%Y A130818 Cf. A006784, A064648, A101689.
%K A130818 cons,easy,nonn
%O A130818 1,2
%A A130818 Stephen Casey (hexomino(AT)gmail.com), Jul 17 2007