This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A130853 #45 May 22 2025 01:03:19 %S A130853 0,1,0,1,0,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1, %T A130853 1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1, %U A130853 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1 %N A130853 Runs of 1's of lengths 1, Fibonacci numbers F(1), F(2), F(3), ... (A000045) separated by 0's. %C A130853 Might be called a Fibonacci message. %H A130853 Antti Karttunen, <a href="/A130853/b130853.txt">Table of n, a(n) for n = 1..46390</a> %H A130853 <a href="/index/Ch#char_fns">Index entries for characteristic functions</a> %F A130853 a(n) = b(n+1) - b(n) where b(n) = round(LambertW((phi^(3/2 + n)*log(phi))/sqrt(5)) / log(phi)), phi = (1 + sqrt(5))/2. - _Alan Michael Gómez Calderón_, Dec 11 2024 %e A130853 Begin with 0. First Fibonacci number F(1)=1, so append 1's to 0 once - 01, append 0 - 010, F(2)=1, append 1's once and 0 - 01010, F(3)=2, we append two 1's and 0 - 01010110, ... %e A130853 As a triangle: %e A130853 0, 1; %e A130853 0, 1; %e A130853 0, 1, 1; %e A130853 0, 1, 1, 1; %e A130853 0, 1, 1, 1, 1, 1; %e A130853 0, 1, 1, 1, 1, 1, 1, 1, 1; %e A130853 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1; %e A130853 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1; %e A130853 ... %p A130853 ts_Finonacci_zap:=proc(n) local i,j,tren,ans; ans := [ 0 ]: for i from 1 to n do tren := combinat[fibonacci](i): for j from 1 to tren do ans:=[ op(ans), 1 ]: od: ans:=[ op(ans), 0 ]: od; RETURN(ans) end: ts_Finonacci_zap(16); %p A130853 # second Maple program: %p A130853 T:= n-> [0,1$(<<0|1>, <1|1>>^n)[1,2]][]: %p A130853 seq(T(n), n=1..10); # _Alois P. Heinz_, Dec 11 2024 %t A130853 T[n_] := Join[{0}, Table[1, MatrixPower[{{0, 1}, {1, 1}}, n][[1, 2]]]]; %t A130853 Table[T[n], {n, 1, 10}] // Flatten (* _Jean-François Alcover_, May 21 2025, after _Alois P. Heinz_ *) %o A130853 (PARI) { n=0; i=0; while(n<22, n++; i++; write("b130853.txt", i, " ", 0); k = fibonacci(n); while(k>0, i++; k--; write("b130853.txt", i, " ", 1))); }; \\ _Antti Karttunen_, Dec 07 2017 %Y A130853 Cf. A000045, A093521, A232896 (the positions of zeros). %Y A130853 Cf. A001622, A003849, A005614, A194029. %K A130853 nonn,tabf %O A130853 1,1 %A A130853 _Jani Melik_, Jul 21 2007