This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A130860 #24 Jan 27 2022 21:59:33 %S A130860 0,0,2,2,4,2,3,4,5,5,6,6,6,6,9,9,9,10,10,11,11,13,12,13,13,14,14,14 %N A130860 Number of decimal places of Pi given by integer approximations of the form a^(1/n). %C A130860 Approximations are rounded, not truncated; see the example for n=2. Note that this can produce anomalous results; e.g., 0.148 does not match 0.152 to 1-place accuracy, but does match it to 2-place accuracy. - _Franklin T. Adams-Watters_, Mar 29 2014 %F A130860 a(n) is the number of decimal_places in (round(Pi^n))^1/n w.r.t. Pi. %F A130860 Note that round(Pi^n) is the sequence A002160 (Nearest integer to Pi^n). %e A130860 a(8)=4 because 9489^(1/8) = 3.1416... is Pi accurate to 4 decimal places. %e A130860 a(2)=0. 10^(1/2) = 3.16... rounded to one place is 3.2, while Pi to one place is 3.1. %o A130860 (Python) %o A130860 from math import pi, floor, ceil %o A130860 def round(x): %o A130860 return math.floor(x + 0.5) %o A130860 def decimal_places(x, y): %o A130860 dp = -1 %o A130860 # Compare integer part, shift 1 dp %o A130860 while floor(x + 0.5) == floor(y + 0.5) and x and y: %o A130860 x = (x - floor(x)) * 10 %o A130860 y = (y - floor(y)) * 10 %o A130860 dp = dp + 1 %o A130860 return dp %o A130860 for n in range(1, 30): %o A130860 pi_to_the_n = pow(pi, n) %o A130860 pi_to_the_n_rnd = round(pi_to_the_n) %o A130860 pi_approx = pow(pi_to_the_n_rnd, 1.0 / n) %o A130860 dps = decimal_places(pi_approx, pi) %o A130860 print(dps) %Y A130860 Cf. A002160. %K A130860 nonn,base,more %O A130860 1,3 %A A130860 Stephen McInerney (spmcinerney(AT)hotmail.com), Jul 22 2007