cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130912 Fermat quotients, mod p: ((2^(p-1) - 1)/p) mod p = A007663(n) mod p.

This page as a plain text file.
%I A130912 #22 Feb 21 2022 00:18:22
%S A130912 1,3,2,5,3,13,3,17,1,6,1,23,25,44,36,8,36,10,2,56,19,48,6,57,92,59,13,
%T A130912 67,83,18,17,53,30,96,56,82,67,47,3,50,148,50,104,175,135,109,189,201,
%U A130912 68,7,26,142,247,225,128,260,109,70,74,58,78,294,175,120,175,139,153
%N A130912 Fermat quotients, mod p: ((2^(p-1) - 1)/p) mod p = A007663(n) mod p.
%D A130912 Paulo Ribenboim, "The Little Book of Bigger Primes", Springer-Verlag, 2004, p. 232.
%H A130912 Amiram Eldar, <a href="/A130912/b130912.txt">Table of n, a(n) for n = 2..10000</a>
%F A130912 Fermat quotients mod p = A007663: (1, 3, 9, 93, 315, ...) mod p; where the Fermat quotients for base 2 = (2^(p-1) - 1). Applies to the odd primes.
%e A130912 a(4) = 2 = 9 mod 7 where A007663(4) = 9.
%e A130912 The Fermat prime(base 2) for 7 = 9 = (2^6 - 1)/7. Then 9 mod 7 = 2.
%p A130912 a := 2 : for n from 2 to 120 do p := ithprime(n) ; fq := (a^(p-1)-1)/p ; printf("%d,",fq mod p) ; od: # _R. J. Mathar_, Oct 28 2008
%t A130912 Mod[(2^(#-1)-1)/#,#]&/@Prime[Range[2,70]] (* _Harvey P. Dale_, Mar 31 2013 *)
%o A130912 (PARI) forprime(p=3, 1e3, my(t=(2^(p-1)-1)/p); print1(t%p, ", ")); \\ _Felix Fröhlich_, Jul 26 2014
%Y A130912 Cf. A007663.
%K A130912 nonn
%O A130912 2,2
%A A130912 _Gary W. Adamson_, Jun 08 2007
%E A130912 More terms from _R. J. Mathar_, Oct 28 2008