This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A131044 #32 Oct 04 2022 08:15:44 %S A131044 1,1,1,1,0,1,1,1,2,1,1,0,4,4,1,1,1,3,8,5,1,1,0,6,14,14,6,1,1,1,6,21, %T A131044 32,21,7,1,1,0,7,32,55,54,28,8,1,1,1,8,38,96,116,83,36,9,1,1,0,10,54, %U A131044 142,222,206,120,45,10,1,1,1,9,65,211,386,438,328,165,55,11,1 %N A131044 Triangle T(n,k) read by rows: T(n,k) is the number of compositions of n into k parts such that at least two adjacent parts are equal. %C A131044 Condition is void for compositions into 1 part (there is one such composition). %C A131044 Triangle = Pascal's triangle (A007318) - A106351, except for first column. %H A131044 Alois P. Heinz, <a href="/A131044/b131044.txt">Rows n = 1..141, flattened</a> %e A131044 T(5,3) = 4 because among the 6 compositions of 5 into 3 parts there are 4 with one part repeated, marked by (*) between the parts: %e A131044 [ 3 1*1 ], [ 2*2 1 ], [ 1 3 1 ], [ 2 1 2 ], [ 1 2*2 ], [ 1*1 3 ]. %e A131044 Triangle begins: %e A131044 1; %e A131044 1, 1; %e A131044 1, 0, 1; %e A131044 1, 1, 2, 1; %e A131044 1, 0, 4, 4, 1; %e A131044 1, 1, 3, 8, 5, 1; %e A131044 1, 0, 6, 14, 14, 6, 1; %e A131044 1, 1, 6, 21, 32, 21, 7, 1; %e A131044 ... %p A131044 b:= proc(n, h, t) option remember; %p A131044 if n<t then 0 elif n=0 then `if`(t=0, 1, 0) %p A131044 else add(`if`(h=j, 0, b(n-j, j, t-1)), j=1..n) fi %p A131044 end: %p A131044 T:= (n, k)-> `if`(k=1, 1, binomial(n-1, k-1) -b(n, -1, k)): %p A131044 seq(seq(T(n, k), k=1..n), n=1..12); # _Alois P. Heinz_, Feb 13 2013 %t A131044 b[n_, h_, t_] := b[n, h, t] = Which[n<t, 0, n == 0, If[t == 0, 1, 0], True, Sum[If[h == j, 0, b[n-j, j, t-1]], {j, 1, n}]]; T[n_, k_] := If[k == 1, 1, Binomial[n-1, k-1] - b[n, -1, k]]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* _Jean-François Alcover_, Feb 18 2015, after _Alois P. Heinz_ *) %o A131044 (Sage) %o A131044 def A131044_r(n,k): %o A131044 allowed = lambda x: len(x) <= 1 or 0 in differences(x) %o A131044 return len([c for c in Compositions(n,length=k) if allowed(c)]) %o A131044 # [_D. S. McNeil_, Jan 06 2011] %Y A131044 Cf. A106351 (no two adjacent parts are equal). %K A131044 nonn,tabl %O A131044 1,9 %A A131044 _Joerg Arndt_, Jan 06 2011