This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A131048 #12 Dec 29 2023 10:54:44 %S A131048 1,1,2,3,3,3,5,12,6,4,11,25,30,10,5,21,66,75,60,15,6,43,147,231,175, %T A131048 105,21,7,85,344,588,616,350,168,28,8,171,765,1548,1764,1386,630,252, %U A131048 36,9 %N A131048 (1/3) * (A007318^2 - A007318^(-1)). %C A131048 Left border = A001045: (1, 1, 3, 5, 11, 21, 43, 85, ...). %C A131048 Row sums = (1, 3, 9, 27, ...). %C A131048 Analogous triangles for other powers of P are: A131047, A131049, A131050 and A131051. %F A131048 Let A007318 (Pascal's triangle) = P. then A131048 = (1/3) * (P^2 - 1/P). Delete right border of zeros. %F A131048 From _Peter Bala_, Oct 24 2007: (Start) %F A131048 O.g.f.: 1/(1 - (2*x + 1)*t + (x^2 + x - 2)*t^2) = 1 + (1 + 2*x)*t + (3 + 3*x + 3*x^2)*t^2 + .... %F A131048 T(n,n-k) = (1/3)*C(n,k)*(2^k - (-1)^k) = C(n,k)*A001045(k). %F A131048 The row polynomials R(n,x) := Sum_{k = 0..n} T(n,n-k)*x^(n-k) = (1/3)*((x + 2)^n - (x - 1)^n) and have the divisibility property R(n,x) divides R(m,x) in the polynomial ring Z[x] if n divides m. %F A131048 The polynomials R(n,-x), n >= 2, satisfy a Riemann hypothesis: their zeros lie on the vertical line Re x = 1/2 in the complex plane. Compare with A094440. (End) %e A131048 First few rows of the triangle: %e A131048 1; %e A131048 1, 2; %e A131048 3, 3, 3; %e A131048 5, 12, 6, 4; %e A131048 11, 25, 30, 10, 5; %e A131048 21, 66, 75, 60, 15, 6; %e A131048 43, 147, 231, 175, 105, 21, 7; %e A131048 ... %Y A131048 Cf. A131047, A131049, A131050, A131051, A001045, A007318. %Y A131048 Cf. A001045, A094440, A132148. %K A131048 nonn,tabl %O A131048 1,3 %A A131048 _Gary W. Adamson_, Jun 12 2007