This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A131060 #13 Feb 21 2022 00:26:16 %S A131060 1,1,1,1,4,1,1,7,7,1,1,10,16,10,1,1,13,28,28,13,1,1,16,43,58,43,16,1, %T A131060 1,19,61,103,103,61,19,1,1,22,82,166,208,166,82,22,1,1,25,106,250,376, %U A131060 376,250,106,25,1,1,28,133,358,628,754,628,358,133,28,1 %N A131060 3*A007318 - 2*A000012 as infinite lower triangular matrices. %C A131060 Row sums = A097813: (1, 2, 6, 16, 38, 84, 178, ...). %H A131060 G. C. Greubel, <a href="/A131060/b131060.txt">Rows n = 0..100 of triangle, flattened</a> %F A131060 T(n,k) = 3*binomial(n,k) - 2. - _Roger L. Bagula_, Aug 20 2008 %e A131060 First few rows of the triangle: %e A131060 1; %e A131060 1, 1; %e A131060 1, 4, 1; %e A131060 1, 7, 7, 1; %e A131060 1, 10, 16, 10, 1; %e A131060 1, 13, 28, 28, 13, 1; %e A131060 1, 16, 43, 58, 43, 16, 1; %e A131060 ... %p A131060 A131060:= (n,k) -> 3*binomial(n, k)-2; seq(seq(A131060(n, k), k = 0..n), n = 0.. 10); # _G. C. Greubel_, Mar 12 2020 %t A131060 T[n_, k_] = 3*Binomial[n, k] -2; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* _Roger L. Bagula_, Aug 20 2008 *) %o A131060 (Magma) [3*Binomial(n,k) -2: k in [0..n], n in [0..10]]; // _G. C. Greubel_, Mar 12 2020 %o A131060 (Sage) [[3*binomial(n,k) -2 for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Mar 12 2020 %Y A131060 Cf. A109128, A123203, A131061, A131063, A131064, A131065, A131066, A131067, A131068. %K A131060 nonn,tabl %O A131060 0,5 %A A131060 _Gary W. Adamson_, Jun 13 2007 %E A131060 More terms from _Roger L. Bagula_, Aug 20 2008