This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A131061 #15 Sep 08 2022 08:45:30 %S A131061 1,1,1,1,5,1,1,9,9,1,1,13,21,13,1,1,17,37,37,17,1,1,21,57,77,57,21,1, %T A131061 1,25,81,137,137,81,25,1,1,29,109,221,277,221,109,29,1,1,33,141,333, %U A131061 501,501,333,141,33,1,1,37,177,477,837,1005,837,477,177,37,1 %N A131061 Triangle read by rows: T(n,k) = 4*binomial(n,k) - 3 for 0 <= k <= n. %C A131061 Row sums = A131062: (1, 2, 7, 20, 49, 110, 235, ...); the binomial transform of (1, 1, 4, 4, 4, ...). %C A131061 Triangle equals 4*A007318 - 3*A000012 as infinite lower triangular matrices. - _Emeric Deutsch_, Jun 21 2007 %H A131061 G. C. Greubel, <a href="/A131061/b131061.txt">Rows n = 0..100 of triangle, flattened</a> %F A131061 G.f.:(1 - z - t*z + 4*t*z^2)/((1-z)*(1-t*z)*(1-z-t*z)). - _Emeric Deutsch_, Jun 21 2007 %e A131061 First few rows of the triangle are %e A131061 1; %e A131061 1, 1; %e A131061 1, 5, 1; %e A131061 1, 9, 9, 1; %e A131061 1, 13, 21, 13, 1; %e A131061 1, 17, 37, 37, 17, 1; %e A131061 1, 21, 57, 77, 57, 21, 1; %e A131061 ... %p A131061 T := proc (n, k) if k <= n then 4*binomial(n, k)-3 else 0 end if end proc; for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form - _Emeric Deutsch_, Jun 21 2007 %t A131061 Table[4*Binomial[n, k] -3, {n,0,10}, {k,0,n}]//Flatten (* _G. C. Greubel_, Mar 12 2020 *) %o A131061 (Magma) [4*Binomial(n, k) -3: k in [0..n], n in [0..10]]; // _G. C. Greubel_, Mar 12 2020 %o A131061 (Sage) [[4*binomial(n, k) -3 for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Mar 12 2020 %Y A131061 Cf. A109128, A123203, A131060, A131063, A131064, A131065, A131066, A131067, A131068. %K A131061 nonn,tabl %O A131061 0,5 %A A131061 _Gary W. Adamson_, Jun 13 2007 %E A131061 More terms from _Emeric Deutsch_, Jun 21 2007