This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A131065 #22 Sep 08 2022 08:45:30 %S A131065 1,1,1,1,7,1,1,13,13,1,1,19,31,19,1,1,25,55,55,25,1,1,31,85,115,85,31, %T A131065 1,1,37,121,205,205,121,37,1,1,43,163,331,415,331,163,43,1,1,49,211, %U A131065 499,751,751,499,211,49,1,1,55,265,715,1255,1507,1255,715,265,55,1 %N A131065 Triangle read by rows: T(n,k) = 6*binomial(n,k) - 5 for 0 <= k <= n. %C A131065 Row sums = A131066. %C A131065 The matrix inverse starts: %C A131065 1; %C A131065 -1, 1; %C A131065 6, -7, 1; %C A131065 -66, 78, -13, 1; %C A131065 1086, -1284, 216, -19, 1; %C A131065 -23826, 28170, -4740, 420, -25, 1; %C A131065 653406, -772536, 129990, -11520, 690, -31, 1; - _R. J. Mathar_, Mar 12 2013 %H A131065 Indranil Ghosh, <a href="/A131065/b131065.txt">Rows 0..120 of triangle, flattened</a> %F A131065 G.f.: (1-z-t*z+6*t*z^2)/((1-z)*(1-t*z)*(1-z-t*z)). - _Emeric Deutsch_, Jun 20 2007 %e A131065 First few rows of the triangle are: %e A131065 1; %e A131065 1, 1; %e A131065 1, 7, 1; %e A131065 1, 13, 13, 1; %e A131065 1, 19, 31, 19, 1; %e A131065 1, 25, 55, 55, 25, 1; %e A131065 ... %p A131065 T := proc (n, k) if k <= n then 6*binomial(n, k)-5 else 0 end if end proc: for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # _Emeric Deutsch_, Jun 20 2007 %t A131065 Table[6*Binomial[n,k]-5,{n,0,15},{k,0,n}]//Flatten (* _Harvey P. Dale_, May 15 2016 *) %o A131065 (Magma) [6*Binomial(n,k) -5: k in [0..n], n in [0..10]]; // _G. C. Greubel_, Mar 12 2020 %o A131065 (Sage) [[6*binomial(n,k) -5 for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Mar 12 2020 %Y A131065 Cf. A109128, A123203, A131060, A131061, A131063, A131064, A131066, A131067, A131068. %K A131065 nonn,tabl %O A131065 0,5 %A A131065 _Gary W. Adamson_, Jun 13 2007 %E A131065 More terms from _Emeric Deutsch_, Jun 20 2007